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State change, quantum probability, and information gain in the operational phase- 
space measurement are formulated by means of positive operator-valued measure 
(POVM) and operation. The properties of the operational POVM and its marginal 
POVM which yield the quantum probability distributions of the measurement 
outcomes obtained by the operational phase-space measurement are investigated. 
The Naimark extension of the operational POVM can be expressed in terms of 
the relative-position states and the relative-momentum states in the extended 
Hilbert space. An observable quantity measured in the operational phase-space 
measurement becomes a fuzzy or unsharp observable. The state change of a 
physical system caused by the operational phase-space measurement is described 
by the operation which is obtained explicitly for the position and momentum 
measurements and for the simultaneous measurement of position and momentum. 
Using the results, the entropy change of the measured physical system and the 
information gain in the operational phase-space measurement are investigated. 
It is found that the average value of the entropy change is equal to the Shannon 
mutual information extracted from the outcomes exhibited by the measurement 
apparatus. 

1. I N T R O D U C T I O N  

The operational phase-space measurement (W6dkiewicz, 1984, 1986, 
1987; Burak and W6dkiewicz, 1992; Bu~ek et  al., 1995a, b; Englert and 
W6dkiewicz, 1995), which is closely related to the simultaneous quantum 
measurement of position and momentum (Arthurs and Kelly, 1965; Busch, 
1985; Stenholm, 1992) and to the quantum measurement on fuzzy or unsharp 
observables (Prugove~ki, 1973, 1974, 1975, 1976a, b, 1977; Twareque Ali and 
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Emch, 1974; Twareque Ali and Doebner 1976; Twareque Ali and Prugove~ki, 
1977a, b; Morato, 1977), is formulated in terms of quantum probability 
distributions which are functions of position and momentum variables defined 
on the quantum phase space. The quantum probability distribution can be 
expressed in terms of the smoothed Wigner function, which is the convolution 
of two Wigner functions (O'Connell and Wigner, 1981; Smith, 1988; Lalovi6 
et  al., 1992; Orlowski and Wtinsche, 1993), or as the convolution of the P- 
function and Q-function, which are quasi-probability distributions in the phase 
space. Such smoothing is ascribed to the finite accuracy of a measurement 
apparatus and to the fuzziness or unsharpness of a measured physical quantity. 
Unlike the Wigner function, the smoothed Wigner function is nonnegative 
and can be interpreted as the probability distribution of position and momen- 
tum that is defined on phase space analogous to the one in the classical 
statistical mechanics (Mayer and Mayer, 1977). 

The phase-space description of quantum mechanics is also useful for 
investigating quantum chemical systems (Tortes-Vega, 1993a, b; Tones-Vega 
and Frederick, 1990, 1993; Harriman, 1994; Wlodarz, 1994; Moiler et  al., 
1997). Furthermore, an uncertainty relation, called the operational uncertainty 
relation (W6dkiewicz, 1987), is established in the operational phase-space 
measurement. The minimum value of the operational uncertainty is twice 
that of the usual uncertainty of position and momentum variables. This is 
because the uncertainty caused by the measurement apparatus as well as the 
intrinsic uncertainty in the quantum state of a physical system enter in our 
observation. It is shown that the operational phase-space probability distribu- 
tion can be derived within the framework of the relative-state formulation 
of quantum systems (Ban, 199 l, 1993a, 1996) that was originally constructed 
to introduce a quantum mechanical phase operator (Ban, 1992a, b, 1993b, 
1994a, b). Moreover, the new interpretation of the scalar product in the 
Hilbert space of a quantum system considered by several authors (Prugove~ki, 
1982; O'Connell and Rajagopal, 1982; Aharonov et  al., 1981) is closely 
related to the concept of the operational phase-space measurement. The 
operational approach to optical homodyne detection has recently been consid- 
ered (Banaszek and W6dkiewicz, 1997). 

Quantum measurement is mathematically described in term of a positive 
operator-valued measure (POVM), also called an effect, in the most general 
way (Davies, 1976; Helstrom, 1976; Holevo, 1982; Kraus, 1983; Busch et  
al., 1995; Ozawa, 1984, 1993; Peres, 1993). POVM includes a projection- 
valued measure as a special case that describes the standard quantum measure- 
ment considered by von Neumann (1955), referred to as the first-kind mea- 
surement. The quantum probability of some measurement outcome is 
calculated by the POVM and the statistical operator of a measured quantum 
state. The change of the quantum state of a physical system caused by 
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quantum measurement is described by an operation (or a completely positive 
instrument) (Davies, 1976; Kraus, 1983; Busch et  al., 1995; Ozawa, 1984, 
1993), which is expressed as a superoperator (Fano, 1957; Crawford, 1958; 
Prigogine et al., 1973; Schmutz, 1978; Umezawa et al., 1982; Umezawa, 
1993). An operation is related to a POVM through a quantum probability. 

So far, the operational phase-space quantum measurement has been 
formulated in an empirical and intuitive way (W6dkiewicz, 1984, 1986, 
1987; Burak and W6dkiewicz, 1992; Bu~ek et  al., 1995a, b; Englert and 
W6dkiewicz, 1995). Furthermore, although the quantum probability distribu- 
tions of the measurement outcomes were obtained, the state change caused 
by the operational phase-space measurement has not been considered in 
detail. Therefore, using the POVM and the operation, we will investigate the 
operational phase-space measurement and obtain the change of the quantum 
state caused by the effect of the measurement in a systematic way. 

An information-theoretical approach to quantum measurement has 
recently attracted much attention since it provides a basis for quantum infor- 
mation, communication, and computation (Bendjaballah et al., 1991; Belavkin 
et  al., 1995; Hirota et al., 1997). Therefore it is important to investigate the 
entropy change of a physical system and the information gain extracted from 
measurement outcomes in the operational phase-space measurement. In this 
paper, we will consider the measurement entropy (Ballan et  al., 1986) and 
the relation to the Shannon mutual information or the mean information 
content (Shannon, 1948a, b; Brillouin, 1956; Majernik, 1970, 1973; Cover 
and Thomas, 1991) in the operational phase-space measurement. For this 
purpose, we have to obtain the POVM and the operation for the operational 
phase-space measurement. It will be shown that the average value of the 
entropy change of a physical system in the operational phase-space measure- 
ment of position or momentum is equal to the Shannon mutual informations 
extracted from the outcomes exhibited by the measurement apparatus. 

The remainder of this paper is organized as follows. In Section 2, we 
briefly summarize the operational phase-space measurement in a convenient 
way for our purpose (W6dkiewicz, 1984, 1986, 1987, Burak and W6dkiewicz, 
1992; Bu~ek et al., 1995a, b; Englert and W6dkiewicz, 1995). There we 
give several examples of operational phase-space probability distributions. 
In Section 3, we obtain the operational POVM that describes the operational 
phase-space measurement. Furthermore, we investigate the Naimark exten- 
sions of the operational POVM and show that the Naimark extensions are 
expressed in terms of the relative-position states and the relative-momentum 
states (Ban, 1993a, b, 1996; Hongi-yi and Klauder, 1994; Hongi-yi and Xiong, 
1995; Hongi-yi and Yue, 1996). Using the results, we investigate the marginal 
POVM and the observable quantity in the operational phase-space measure- 
ment. The quantity measured in the operational phase-space measurement 
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becomes a fuzzy or unsharp observable. In Section 4, we obtain the operation 
that describes the state change of the physical system caused by the operational 
phase-space measurement. There we consider position and momentum mea- 
surements and the simultaneous measurement of position and momentum. 
To this end, we apply the superoperator method or thermofield dynamics 
(Fano, 1957; Crawford, 1958; Prigogine et  al., 1973; Schmutz, 1978; Umez- 
awa et al., 1982; Umezawa, 1993) to express the results in a simple form. 
In Section 5, we consider the entropy change of the physical system and the 
information gain in the operational phase-space measurement of position and 
momentum. It is shown that the average value of the entropy change is equal 
to the Shannon mutual information obtained from the measurement outcomes 
shown by the measurement apparatus. Furthermore, the simultaneous mea- 
surement of position and momentum is also considered. In this case, we use 
the Q-function and the Wehrl entropy (Wehrl, 1978, 1979) as the probability 
distribution of position and momentum and the entropy. In Section 6, we 
summarize our results. 

2. OPERATIONAL PHASE-SPACE MEASUREMENT 

2.1. Operational Probability Distribution 

In this section, we summarize the operational phase-space measurement 
(W6dkiewicz, 1984, 1986, 1987; Burak and W6dkiewicz, 1992; Bu2ek et al., 
1995a, b; Englert and Wrdkiewicz, 1995) in a convenient way for our purpose. 
Suppose that we observe a physical system in quantum state 15, where 15 is 
a statistical operator defined on the Hilbert space ~ of the physical system. 
To observe the physical system, we must use a measurement apparatus that 
is prepared in quantum state d'a defined on the Hilbert space ~a of the 
measurement apparatus. Of course, the quantum state I~ a should be appropriate 
for the measurement that we carry out. Let 6" be a statistical operator defined 
on the Hilbert space ~ of the physical system, which has the same property 
as that of the statistical operator (~a of the measurement apparatus (see Section 
4). In the operational phase-space measurement, the quantum state described 
by the statistical operator 6- is referred to as a quantum-filter state or a 
quantum-ruler state (Bu~ek et  al., 1995a, b). 

In the operational phase-space measurement, to observe the physical 
system, we compare the quantum state 15 of the physical system with the 
quantum-filter state #. To do this, we first transport the quantum-filter state 
d- to the measured physical system in the phase space, and then we investigate 
the overlap between the quantum states 15 and ~. This transportation in the 
phase space is given by the unitary transformation D(r, k)#bt(r, k), where 
the pair (r, k) represents the amount of the transportation in the two-dimen- 
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sional phase space and the unitary operator D(r, k) is the displacement operator 
given by 

/)(r, k) = exp[i(k.f - r/~)] (2.1) 

= exp[~8 - ~*~*] =/5(Ix) 

Here the operators $ and/5 are the canonical position and momentum operators 
of the physical system, satisfying the canonical commutation relation [$, p] = 
i (h = 1), and the operators 8 and 8 t are bosonic annihilation and creation 
operators, which satisfy the commutation relation [8, fit] = 1, where the 
operators fi and ~, are related to 27 and/5 by the relations 

a - J2 + i/5 8'  = f - i/5 (2.2) 

Furthermore, the complex parameter ~ is defined by 

r +  ik 
! * -  v/~ (2.3) 

In this paper, we will confine ourselves to considering two-dimensional 
phase space. The generalization to phase space of higher dimensionality 
is straightforward. 

Therefore the operational phase-space probability distribution ~l/'(r, k) 
(W6dldewicz, 1986; Bu2ek et al., 1995a; Ban, 1996) is given by 

1 
~ k) = ~ Tr[~b(r, k)Sbt(r,  k)] (2.4) 

where Tr stands for the trace operation over the Hilhert space of the physical 
system. It is easy to verify that the operational phase-space probability distri- 
bution ~W'(r, k) is nonnegative and normalized as 

fS l dr dk W(r, k) = 1 (2.6) 
0 0  

The quantity W(r, k)Ar Ak represents the probability that the measured values 
of the phase-space variables r and k belong to the ranges (r, r + At) and (k, 
k + Ak), where Ar and Ak are infinitesimal quantities. The meaning of  the 
phase-space variables r and k will be considered later. The operational phase- 
space probability distribution W(r, k) given by equation (2.4) is also called 
the propensity of the quantum state (W6dkiewicz, 1984, 1986). 

The operational phase-space probability distribution W(r, k) can be 
expressed in terms of well-known phase-space functions such as the P- 
function and Q-function (Husimi function). To do this, we introduce the 
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phase-space function Po(ot; s) of the quantum state 15 (Cahill and Glauber, 
1969a, b; Agarwal and Wolf, 1970a-c), 

with 

Po(a; s) = Tr[15T(ot; s)l (2.6) 

pp(a) = 1 pp(a; 1) = 1 f~ 

W~,((x) = 1 po((x;O)-- = l--sf ~ 
E R 2 

5Io Qp(ot) = 7r ~R2 

d26 Tr[be ~ate-~*a]e~* -~*~ (2.11) 

d26 Tr[Oe~at-~*~]e ~*-~*~ (2.12) 

dZ6 Tr[Oe-t*ae~a*]e~*-~*t (2.13) 

7"(oL; s) = I f dZ6/)(6; s) exp[ar* - a*r] (2.7) 
J~ ER 2 

/)(6; s) = exp[rd* -- 6"~ + 1 sir, 2 ] (2.8) 

where d26 = d(Rec 6) d(Im 6) and Re(O [Im(6)] stands for taking the real 
(imaginary) part of complex variable ~. In equation (2.7), R stands for the 
whole real axis. The phase-space function Pp(a; s) is called the s-ordered 
quasi-probability distribution, since Po(ot; s) is normalized as f,~Rz dZa  
P0(a; s) = 1, but in not nonnegative. The statistical operator ~ is expressed 
in terms of Po(oL; s) and 7"(a; s), 

1 f,~ d2ot Pp(a; - s)7"(a; s) (2.9) 

Using the s-ordered quasi-probability distributions, we can express the opera- 
tional phase-space probability distribution ~lf(r, k) as 

1 I ,  d2a Pp(a + Ix; s)P,~(a; - s )  (2.10) ~lf(r, k) = ~ 2  _ ea z 

where we set Ix = (r + ik)/x/2, and P,,(a; s) is the s-ordered quasi-probability 
function of the quantum-filter state d-. 

It is easy to see from the definitions that the phase-space functions Pp(ot) 
= (ll'rr)Po(ot; 1), Wp(a) = (llTr)Po(ot; 0), and Qo(et) = (l/-rr)Po(ot; -1 )  are, 
respectively, the P-function (Glauber, 1963a, b; Sudarshan, 1963), the Wigner 
function (Wigner, 1932; Hillery et al., 1984), and the Q-function (Husimi 
function) (Husimi, 1940; Kano, 1965; Mehta and Sudarshan, 1965) of the 
quantum state P, which are given by 
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Thus, using these functions, we obtain the expressions for the operational 
phase-space probability distribution ~(r ,  k) as follows: 

~r dqf~_ dPPp(q+r,p+k)Q~(q,x) 

= I ~  dqI~ dPQp(q+r,p+k)P~(q, x) 

= f~_ dq f~ dp W~(q + r,p + k)W,~(q,x) (2.14) 

where we set F(q, p) = F(a) (F = P, W, Q) with ~ = (q + ip)/,/2. The 
last expression in this equation is the smoothed Wigner function (O'Connell 
and Wigner, 1981; Smith, 1988; Lalovi6 et aL, 1992; Orlowski and 
Wtinsche, 1993). 

In particular, when the quantum-filter state is vacuum, namely, d- = 
10)(01, the operational phase-space probability distribution ~W(r, k) becomes 

~ ~) = exp ~ + ~ Wp(r, k) (2.15) 

On the other hand, when the quantum state of the physical system and the 
quantum-filer state are both pure, setting ~ = I~J)(t~l and d" = I~b)(~bl yields 
the following expression for the operational phase-space probability distribu- 
tion ~W(r, k): 

1 (OlD(r, k)lqb) 2 W(r ,  k) = 

1 dx ~(x + r)do(x) exp[-ikx] (2.16) 
27 

which is the same form that was used for considering a new interpretation 
of the scalar product in the Hilbert space of the physical system (Prugove~ki, 
1982; O'Connell and Rajagopal, 1982; Aharonov et al., 1981). 

2.2. Properties of the Probability Distribution 

We now consider the properties of the operational phase-space probabil- 
ity distribution ~f(r, k). We first investigate the average values of the phase- 
space variables r and k and their fluctuations. For the sake of simplicity, we 
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first assume that the quantum-filter state is the vacuum state ,3" = 10)(01. 
Then it is found from equation (2.4) that 

f dr dk r~lg(r, k) = Tr[20] --- (2), 
o e  

dr dk kW(r, k) = Tr iO]  -- ~0} o 

Thus the average values 
those of the position and 
state P. The fluctuations are given by 

(2.17) 

(2.18) 

of the phase-space variables r and k are equal to 
momentum of the physical system in the quantum 

(2.19) (Ar)2==-I~ drI~ ~ 

(Ak)2=-I~ drI~ ~ 

1 dk(r - (r})2~ k) = (Ao2) + 

1 ak(k - (k})2W(r, k) = (&p)2  + (2.20) 

where we have defined (Ap2) 2 = ((2 - (2)0)2)0 a n d  ( A p e )  2 = ((/~ - (/~}p)2}p. 
This result indicates that the fluctuations of  the phase-space variables r and 
k are larger by 1/2 than the intrinsic fluctuations of  the position and momentum 
of the physical system in the quantum state i 5. The increase of the fluctuation 
is ascribed to the unsharpness or the finite accuracy of  the measurement 
apparatus. It is clear that the value of  1/2 is the magnitude of the vacuum 
fluctuation of the measurement apparatus. 

For an arbitrary quantum-filter state 6", we obtain the average values 
and fluctuations of the phase-space variables r and k (Ban, 1996), 

(r) = (2} o + Cx, (k} = (/~)o + Cp (2.21) 

(Ar) 2 = (• 2 + (k~2) 2 (2.22) 

(Ak) 2 = (Aop) 2 + (A,n0) 2 (2.23) 

where Cx and Cp are the parameters that correspond to the phase-space coordi- 
nate of the measurement apparatus and we may set cx = Cp = 0 by appropri- 
ately choosing the origin of the coordinate system of  the phase space. The 
additional fluctuations (A,.f) 2 and (A,~p) 2 in the quantum-filter state 6" are 
given by 

(A j )  2 = Tr[226 "] - {Tr[26-] }2 (2.24) 

(A,~/J) 2 = Tr[p24] - {Tr[/~d'] }2 (2.25) 
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It is considered that additional fluctuations are caused by the finite accuracy 
of the measurement apparatus. Therefore we obtain the operational uncertainty 
relation of the phase-space variables (W6dkiewicz, 1987), 

(Ar)2(Ar) 2 ~ [(Ap2)(Ap/~) + (A~2)(A~/~)] 2 >_ 1 (2.26) 

where we set h = 1. It is found from the above consideration that the phase- 
space variables r and k represent the position and momentum of the measured 
physical system, which includes the effect of the measurement apparatus. 

Next we consider the marginal distributions of the operational phase- 
space probability distribution W(r, k), which are given by 

Wr(r) = f]= dk W(r, k) (2.27) 

~162 ) = f~_= dr W(r, k) (2.28) 

Substituting (2.4) or (2.14) into these equations, we can express the marginal 
distributions ~ ) and ~ ) as 

el~fr(r) = f~-o~ dx 3ffx - r)(xl(~lx} (2.29) 

~ = f~  dk g(p - k)(plOIp) (2.30) 

where the functions f (x)  and g (p) are given by 

f (x)  = (xl61x}, g(p) = (pl~lp) (2.31) 

In equations (2.29)-(2.31), state vectors Ix) and Ip) represent the eigenstates 
of the canonical position and momentum operators, that is, 21u) --- ulu}, 21u) 
= iOlu)/Ou and t~lu) = -iOlu)/Ou, plu) -- ulu). It is seem from (2.29) and 
(2.30) that the function f (x)  or g (p) is the filter function that determines 
the accuracy of the measurement apparatus in the position or momentum 
measurement on the physical system. Therefore, it is found that the quantum- 
filter state 6- characterizes the measurement apparatus in the operational 
phase-space measurement. The marginal distributions given by (2.29) and 
(2.29) appear in the fuzzy space formulation of quantum mechanics (Prugo- 
ve~ki, 1973, 1974, 1975, 1976a, b, 1977; Twareque Ali and Emch, 1974; 
Twareque Ali and Doebner, 1976; Twareque Ali and Prugove~ki, 1977a, b; 
Morato, 1977). 
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When the quantum-filter state is the squeezed-vacuum state with real 
squeezing parameter ~/(Yuen, 1976), namely, 

[1 ] 
6- = b/)(~/I, 1"7) = exp ~ ~/(~t2 _ 42) 10) (2.32) 

the filter functions f (x )  and g (p) are given by 

1 -e -~  f ( x )  - e~ r- ~ exp (2.33) 

1 
e -~/ -~  exp - (2.34) 

Thus we see that if ~/ > 0 (~/ < 0), the measurement of  the momentum 
(position) is more accurate than that of the position (momentum). In particular, 
we can approximate Wr(r) ~ (rlOlr) for - ~ / > >  1 and ~ ) ~ (kllSIk) for 
~ / > >  1. Therefore, if - ~ / > >  1 ( ~ / > >  1), the additional fluctuation caused 
by the measurement apparatus does not come in the position (momentum) 
measurement on the physical system. But we cannot obtain ~14fr(r) ~ (rlOlr) 
and ~ ~ (kllSIk) simultaneously, which violates the uncertainty relation 
of the measurement apparatus. 

2.3. Examples of the Operational Probability Distribution 

Before closing this section, we give the operational phase-space probabil- 
ity distributions W(r, k) for the several quantum-filter states 6-. We first 
consider the vacuum filter state 6- = 10)(01. In this case, the operational 
phase-space probability distribution becomes the Q-function (Husimi func- 
tion) (Husimi, 1940; Kano, 1965; Mehta and Sudarshan, 1965) of the quantum 
state ~ of the physical system, 

~14f(r, k) = ~ (IXI~IIX) (2.35) 

where IIX) is the coherent state with complex amplitude Ix = (r + ik)lx/2. 
The phase marginal distribution ~14f,(0) of equation (2.35) can be used for 
investigating the phase properties of the photon (Burak and W6dkiewicz, 
1992), 

W,(0)  = dR RW(r ,  k) (2.36) 

k 
where R = ,Jr 2 + k 2 and tan 0 = - .  

r 
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When we choose the Fock state In)(nl as the quantum-filter state, we 
obtain the operational phase-space probability distribution, 

1 
~l/'(r, k) = ~ (p~, nll~lp4 n) (2.37) 

where IIx; n) =/)(l~)ln) is the displaced number state (Boiteux and Levelut, 
1973; Mahran and Satyanarayana, 1986; de Oliveira et al., 1990). In particular, 
when the measured physical system is prepared in the coherent state let) with 
et = (q + ip)/v/-2, equation (2.37) is calculated to be 

~V(r ,k )_  1 [ 1 1 ] 2,+Ln!rr [(r - q)2 + (k - p)Z]n exp - ~  (r - q)2  _ 2 (k  - p ) 2  

(2.38) 

which yields the average values and fluctuations of the phase-space variables, 
(r) = q, (k} = p and (Ar) 2 = (Ak) 2 = 1 + n. Thus, the higher excited 
quantum-filter state gives the lower measurement accuracy. 

Next we consider the thermal state Oth as the quantum-filter state, 

1 In){nl 
~t~-  1 + ~  ,,=o (2.39) 

where ~ is the average value of the thermal photon number. In this case, the 
operational phase-space probability probability distribution is obtained by 
averaging equation (2.37) with respect to n by means of the probability 
p(n) = -~nl(1 + -~)l+n, 

_ , 

W(r, k) 2"rr(1 + ~) ng0 ~ (~'  nllSIl~; n) (2,40) 

When the measured physical system is in the coherent state let), we obtain 
the following Gaussian distribution: 

_ 1 [ ( r - g ) 2 + ( k - p )  2] 
~l/'(r, k) 2~r(l + ~) exp 2(1 + ~) (2.41) 

where we set et = (q + ip)lv/2. Then we have the average values and 
fluctuations of the phase-space variables, {r) = q, (k) = p, and (Ar) 2 = (Ak) 2 
= 1 + ~. It is reasonable that the measurement accuracy becomes lower as 
the thermal noise of the measurement apparatus increases. 
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The marginal distributions of position for the operational phase-space 
probability distributions, (2.38) and (2.41), become 

1 ~ (2m)! ( x _ q ) 2 ~ n _ , , , ) e x p [ _ l ( x _ q ) 2 ]  
~W',(x) - ~ .... o 2"+"(m!)2( n - m)! 

(2.42) 
(X --  q)2 ] 

1 exp ~-l" ~-" ~jJ (2.43) 
~ - x/2ar(1 + n) 

On the other hand, the intrinsic position probability of the physical system 
prepared in the coherent state 15) is given by 

1 
P(x)  = I(etlx)l 2 = - ~  exp[-(x - q)2] (2.44) 

The position probability distributions given by equations (2.42)-(2.44) are 
plotted in Fig. 1. The figure show the characteristic feature of the operational 
phase-space probability, where the effect of the measurement apparatus 
changes the shape of the probability distribution. 

0 . 6  i 

0.4 
a 

0 10 
X 

o 
Q. 

0.2 

0 

Fig. 1. Probability distribution of the position of the physical system in the coherent state In) 
with , ~  Re c~ = q = 5. (a) The intrinsic position probability of the physical system [equation 
(2.44)], (b) the operational position probability for the thermal filter state with ~ = 2 [equation 
(2.43)], and (c) the operational position probability for the number filter state with n = 2 
[equation (2.42)]. 
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Furthermore, when the quantum filter is in the coherent state 113), the 
operational phase-space probability distribution becomes the Q-function, 

1 
~C(r, k) = ~ (Ix + [311~11~ + [3) (2.45) 

We finally consider the squeezed-vacuum state given by equation (2.32) as 
the quantum-filter state. Using the Wigner function Wo( q, p) of the quantum 
state 0 of the physical system, we obtain the operational phase-space probabil- 
ity probability distribution, 

~W(r' k) = l f~_~o dq I~_~ dp exp[-e-2"(r  - 

- e2V(k - p)Z]Wo( q, p) (2.46) 

which is equivalent to the generalized antinormally ordered distribution func- 
tion investigated by Lee (_1995). For the coherent state lot) with complex 
amplitude et = (q + ip)/~/2 of the physical system, equation (2.46) becomes 

1 [ (r - q)2 (k. _- p)2 ] 
~lr(r, k) - "tr(e v + e -v) exp L 1 q- e 2v 1 + ~--:5-4J (2.47) 

which yields the average values and fluctuations of the phase-space variables, 
= l ( l  + e-ZV). (r) = q, (k) = p, (Ar) z = �89 (1 + e zv), and (Ak) z -~ 

3. QUANTUM PR OB AB ILITY IN O P E R A T I O N A L  PHASE-  
SPACE M E A S U R E M E N T  

3.1. Operational Positive Operator-Valued Measure 

The quantum probability that we obtain some measurement outcome 
when we perform a quantum measurement on a physical system can be 
expressed in terms of a positive operator-valued measure (POVM) and a 
statistical operator (Davies, 1976; Helstrom, 1976; Holevo, 1982; Kraus, 
1983; Busch et al., 1995; Ozawa, 1984, 1993; Peres, 1993). The quantum 
probability of measurement outcome xj is given by P (xj) = Tr[l~I(xi)0], where 

is the statistical operator that describes the quantum state of  the measured 
physical system and l-[(xj) is the POVM that describes the quantum measure- 
ment which yields the outcome xj. The POVM I](xj) is a nonnegative Her- 
mitian operator and constitutes a resolution of  the identity, 

I](x) -> 0, ~ l~I(xj) = ] (3.1) 
J 

where i is an identity operator defined on the Hilbert space ~ of the physical 
system and the summation is taken over all possible measurement outcomes. 



2596 Ban 

These relations ensure that the quantum probability P(xy) is nonnegative 
and normalizable. 

To consider the POVM that describes the operational phase-space mea- 
surement, recall that the probability W(A r, Ak) that the outcomes r and k of 
the operational phase-space measurement belong to the ranges m r and Ak is 
obtained from equation (2.4), 

1 Ir dr i dk Tr[D(r, k)CrD+(r, k)fi] (3.2) ~C(Ar' Ak) = ~ eA~ keAk 

where Ar and At stand for intervals on the real axis. We refer to W(Ar, At) 
as the operational phase-space probability, and we easily find the follow- 
ing relations: 

~ At) -> 0, ~lt(R, R) = 1, e~f(Ar, 0) = ~ At) = 0 (3.3) 

W(A(/) U A(r 2), At) = W(A(/), Ak) + W(AC), At) (3.4) 

cl~(mr, m~ t) U m~ 2)) = o'S(mr, m~ 1)) "}- o'S(mr, m~ 2)) (3.5) 

where R stands for the whole real axis and A~ l) and A~x 2) (x = r, k) are disjoined 
subsets of R, namely, A~ 1) fl A~r :) = A~ 1) fq A~ 2) = 0. 

The POVM II(Ar, At) of the operational phase-space measurement, 
called the operational POVM, is the nonnegative Hermitian operator and the 
resolution of the identity such that it should satisfy the relation 

W(Ar, At) = Tr[fI(A,  Ar)fi] (3.6) 

where fi is the statistical operator of the physical system. Thus we obtain the 
following equality from (3.2) and (3.6): 

lfr dr i dkTr[ID(r,k)#Dt(r,k)O] (3.7) Tr[I](Ar, Ar)fi] = ~ eAr eAk 

Since this equality should hold for any statistical operator ~ of the physical 
system, the operational POVM II(Ar, At) is given by 

lf~ drJt dklD(r,k)~lDt(r,k) (3.8) 
f l ( m  r, mr) = ~ EA r EA k 

It is the easy task to see that the operational POVM l~l(Ar, At) given by this 
equation satisfies the following relations: 

I](Ar, Ak) --> 0, H(R, R) = L I](Ar, 0) = I](0, Ak) = 0 
(3.9) 

fl(A~ 1) IJ A(r2) ' Ak) = fl(A(l), Ak ) .-~ fl(A(r2) ' Ak ) (3.10) 
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fl(Ar, A~ 1) LJ A~ 2)) : fl(Ar, A~ 1)) -'~ fl(Ar, A~ 2)) (3.11) 

[l~l(Ar, Ak)]z :~ l~I(Ar, Ak) (3.12) 

where A~ 1) and A~ 2) (A~ l) and A~ 2)) are disjoined subsets of R. It is seen from 
the last relation that the operational POVM II(Ar, Ak) does not become a 
projection-valued measure. This indicates that the operational phase-space 
measurement (W6dkiewicz, 1984, 1986, 1987; Burak and W6dkiewicz, 1992; 
Bu~ek et al., 1995a, b; Englert and W6dkiewicz, 1995) is an unsharp or 
fuzzy quantum measurement (Prugove6ki, 1973, 1974, 1975, 1976a, b, 1977; 
Twareque Ali and Emch, 1974; Twareque Ali and Doebner, 1976; Twareque 
Ali and Prugove6ki, 1977a, b; Morato, 1977). Expression (3.8) will be used 
in the next section to obtain the operation that describes the state change of 
the physical system caused by the operational phase-space measurement. 

We assume that the quantum-filter state ~ is a function of the annihilation 
and creation operators and we write it as t~ -- qJ(d, fi+). Then the operational 
POVM l~I(Ar, Ak) is expressed as 

1 f,~ dZp~ ~(d - IX, d + - IX*) (3.13) f l (  A r, Ak) : --~ __~ArXAk 

where At and Ak are defined by Ae = Ar/~/2 and /~k = Ak/,,/~, and Ix s 
/~r • /~k means that ReIx s A~ and Iml~ ~ Ak. Furthermore, when there is 
the P-function of the quantum-filter state 6", that is, d" = f ~ R  2 d2c~ I~)P,~(c0(~l, 
we obtain the expression for the operational POVM, 

1 f~ d2~ f~ d2odot>P~r(ot - Ix)(tJtl (3.14) 
f l ( A  r, Ak) : --~ E~rxAk ER 2 

As the example, let us consider the thermal state as the quantum-filter state d', 

1 ( n ) ata 

- 1 

= (1 - e -~ exp[-0a+a] (3.15) 

where the parameter 0 is given by 0 = ln(l + ~-l).  Then, the operator 
/)(r, k)6-/)+(r, k) is calculated to be 

, ] 0 [)(r, k)(rlD+(r, k) = 2 sinh ~ exp 0($ - r) z - 0(/~ - k) 2 

1 ( -n ~ l/2(g-r)2+l/2(~-k)2 
- ~ \ 1---~-~] (3.16) 
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where g and ,6 are the position and momentum operators of the physical 
system. Therefore we obtain the operational POVM II(Ar, Ak) for the thermal 
filter state, 

l~i(mr, mk)_ sinh(0/2_...__) fr dr fk dk 
"IT e a r  E A k  

[, , ] •  - ~ 0 ( g -  r) 2 - ~ 0 ( p - k )  2 

2~r . f~  + _~) fr.Ar dr fk~zk dk \ - ~ n , i  (3.17) 

It is easy to check that the probability Tr[I~I(A,, Ak)lS] calculated from this 
equation is equal to that derived from (2.40). 

The marginal operational probabilities ~ and ~ are obtained 
from equation (3.2), 

':'~r(Ar) =- eW'(Ar, R), ~ = ~W(R, Ak) (3.18) 

Thus it is found from (3.2), (3.8), and (3.18) that the marginal operational 
POVM lqr(Ar) and l~lk(Ak) that satisfy %lCr(Ar) = TR[I~Ir(Ar)O] and %lfk(Ak) = 
Tr[l~Ik(Ak)0] for any statistical operator 0 of the physical system are given by 

~Ir(mr) ~ I~I(mr, R) -~- dr dx Ix)fix - r)(xl (3.19) 
E A r oo 

~Ak 

where the filter functions f(x) and g (p) that represent the accuracy of the 
measurement apparatus are given by f(x) = (xl(rlx) and g (p) = (phrl^p). To 
prove equation (3.19), we calculate the matrix element of the POVM II,(Ar) 
with arbitrary position eigenstates Ix) and ly). Thus we obtain from (3.8) 

( x l [ ' I r ( A r ) l y )  = dr ~ dk (xlD(r, k)~r[)+(r, k)ly) 
E A  r 

(3.21) 

Using the decomposition formula 

e i(~.-rp) = ei~e-irPe- l/2ikr 

we calculate this equation 
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(xll~I ,(A,)ly} = dr ~ dk eik~x-y~(xle-irPOeirPly} 
E A r  

= ~(x - y) ~ dr <xle -irp ~reirPlx} 
Jr E A  r 

= 8(x - y) f dr {x - rlOlx - r) 
Jr E A  r 

= 8(x - y) f drf(x - r) 
Jr E A  r 

=(x l ( f rEardr f ]  dz l z} f ( z -r ) (z l ) ly}  (3.22) 

Therefore we have found that (3.19) is established. In the same way, we can 
prove (3.20) by calculating the matrix element of the POVM IIk(Ak) with 
arbitrary momentum eigenstates. 

Recall that the sets of position and momentum eigenstates, S, = { Ix} I 
x �9 R} and Sp = { Ip)lp ~ R}, are the complete orthonormal systems of the 
Hilbert space of the physical system. Then, using the eigenvalue equations, 
f(.f)lx) = f(x)lx) and g(a0)lp) = g(p)lp), we obtain from (3.19) and (3.20), 

I'I~(A~) = s drf(2 - r) 
~Ar 

l 'Ik(AO = Ik dk g(p - k )  

Ak 

(3.23) 

(3.24) 

It is easily seen that the marginal operational POVM does not become a 
projection-valued measure and describes the unsharp quantum measurement 
of position or momentum of the physical system. 

3.2. Naimark Extension and Relative-Coordinate States 

We have found that the operational POVM and its marginal POVM for 
the operational phase-space measurement are not projection-valued measures. 
However, it is well known that by extending the Hilbert space, any POVM 
can be defined as a projection-valued measure on the extended Hilbert space 
(Helstrom, 1976; Holevo, 1982; Peres, 1993; Busch et al., 1995), which is 
called the Naimark extensions of the POVM. Therefore, we consider the 
Naimark extensions of the operational POVM and investigate their physi- 
cal properties. 
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For this purpose, we introduce an auxiliary Hilbert space ~ .  and define 
state vector lu(r, k))) in the extended Hilbert space ~ | ~a  (Ban, 1993a, 
b; 1996), 

l f2+ lu(r, k) = ~ dx Ix + r) | Ix)ae ia (3.25) 

Here we denote state vectors in the Hilbert spaces ~ ,  ~ ,  and ~ | ~ as 
I~), I~)~, and IqJ)). Furthermore, 0 and 0a stand for operators defined on the 
Hilbert spaces ~ and ~ .  It is easy to see that the set of the state vectors, 
{lu(r, k)))lr, k E R}, is the complete orthonormal system in the extended 
Hilbert space ~ | ~,,, which satisfies the relations, 

((u(r, k)lu(r', k'))) = 5(r - r')5(k - k') .(3.26) 

[ ' d r  J_~ dk k)))((u(r, = I | ia 
f~ 

lu(r, k) l (3.27) 

where ] and ],, are identity operators defined on the Hilbert spaces ~ and 
~a. The state vector lu(r, k))) is the simultaneous eigenstate of operators 

- 2a and ,6 + p~ with eigenvalues r and k, 

(.f - ~f~)lu(r, k))) = rlu(r, k))) (3.28) 

(,0 + p,)lu(r, k))) = klu(r, k))) (3.29) 

Thus we refer to the state vector Ju (r, k))) as the relative-position state. 
Let us introduce the bosonic annihilation and creation operators/~ and 

/~* defined on the Hilbert space ~a, 

- 2 a  + il~ b* 2 a -  iP. 
.f~ , - ~ (3.30) 

Using the annihilation and creation operators (fi, fit, /~, /~*), we obtain the 
Fock-space representation of the relative-position state lu(r, k))) (Hongi-yi 
and Klauder, 1994; Hongi-yi and Xiong, 1995; Hongi-yi and Yue, 1996; 
Ban, 1996), 

= 1 ( 1_2 IX,/~, ~,/~, 1 ) lu(r, k))) ~ exp IIXl2 + IX~t _ + - ikr 10) (~ 10)a 

(3.31) 

where we set Ix = (r + ik)/v/2, and 10) and 10)a are the vacuum states, that 
is, ~10) = 0 and/~10)a = 0. 

In the same way, we can introduce the relative-momentum state 
Iv(r, k))) in the extended Hilbert space ~ | ~ ,  
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Iv(r,k))) =--~f~_ dplp + k)| e-ipr 

_ 1 - 5  
exp I1~1 z + Ixfi+ + - + ~ ikr 10) | 10)a 

(3.32) 

It is easy to see that Iv(r, k))) is the simultaneous eigenstate of operators 
,f + $, and p - /~a  with eigenvalues r and k, 

($ + ,f~)lv(r, k))) = rlv(r, k))) (3.33) 

(p - pa)lv(r, k))) = klv(r, k))) (3.34) 

and that the set of the state vectors, {Iv (r, k))) Ir, k ~ R}, becomes the complete 
orthonormal system in the extended Hilbert space ~ @ ~a. Using the relative- 
position state l u (r, k))) and the relative-momentum state Iv (r, k))), we can obtain 
the Naimark extensions of  the operational POVM and the marginal POVM. 

We now construct a projection-valued measure defined on the extended 
Hilbert space ~ | ~ ,  in terms of the relative-position state l u (r, k))) given 
by (3.25) or (3.31), which gives the same quantum probability as that obtained 
by the operational POVM II(Ar, Ak). Consider the operator ~(Ar, A D defined 
on the extended Hilbert space ~ | ~ ,  

~(Ar, Ak) = f dr ~ dk In(r, k)))((u(r, k)l (3.35) 
Jr ~Ar Jk EA k 

which satisfies the relations 

~(Ar, Ak) ~ 0, ~(R, R) = ? | •, 

~(A~') O A~r 2), Ak) = ~(A(r t), Ak) + ~(A(r2), Ak) 

~(mr, m~') U m~ 2)) = ~(A r, m~ 1)) "q- ~(mr, m~ 2)) 

~(Ar, A,)~(Ar t, AZ) = ~(A r n a'r, ak n a~) 

~(A r, 0) = ~(0, Ak) = 0 (3.36) 

(3.37) 

(3.38) 

(3.39) 

where A(r l) and A~ 2) (A~ 1) and A~ 2)) are disjoined subsets of R. In particular, 
setting Ar = Ai, and Ak = A/, in (3.39), we obtain 

[~(mr, Ak)] 2 = ~(mr, mk) (3.40) 

Therefore it is found from equations (3.36)-(3.40) that the operator ~(Ar, 
Ak) is a projection-valued measure defined on the extended Hilbert space 
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To proceed further, let us introduce a statistical operator lba defined on 
the auxiliary Hilbert space ~a, 

~,, = ~ lm)a [(nldrlm)la(nl (3.41) 
m=0 n=0  

where 6" is the quantum-filter state defined on the Hilbert space ~ .  It is seen 
that the statistical operator ~ satisfies the relations 

a(mlOaln)a : (nl~lm), a(xlO~ly)~ = (yld'lx>, a(UlpalV)a : (--vital -- u) 
(3.42) 

where we have used the relations 

(nix) - 1 e-l/2X2H,(x) = (xln) (3.43) 

(n ip )=  ~ f~o~ dx eipX(nlx) = (-pin) (3.44) 

Here Hn(x) is the Hermite polynomial of order n. Using (3.8), (3.25), (3.35), 
and (3.41), we can calculate as follows: 

TrTra[~(A~, Ak)l~ | 15~] = Ir drI~ dkl---~ ~ dxf~oody 
Ear Eak 2rr J_~ 

x e-ik(x-Y)(x -[- rlOly + r)a(XlOaly)a 

=f~rdrlr~a,  d k - ~ f ]  d x I ~  dy 

• e-ik(x-y)(yl~lx)(x + rlOly + r) 
o ~  

dr =fr.,,,. ay 
X (yleik~Oe-igelx)(xleirPOe-irPly) 

= f~ardr fr~a, dk l Tr[e-irPei~tre-i~eirpo] 

= I,~a dr f,~a dk l Tr[L)(r, k)OD+( r, k)~] 

= Tr[I~l(Ar, ADI3] (3.45) 
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Therefore we find from equation (3.6) that the following relation is 
established: 

~l/'(Ar, Ak) = Tr[l~l(Ar, A~)IS] = TrTra[~(Ar, Ak)fi | ~a] (3.46) 

This result indicates that the projection-valued measure ~g(Ar, Ak) and the 
operational POVM I'l(Ar, Ak) give the same quantum probability %l/'(Ar, A,). 
Thus the projection-valued measure ~(Ar, AD is the Naimark extension of 
the operational POVM H(Ar, A~). The quantum measurement described by 
the projection-valued measure ~g(Ar, Ak) is the simultaneous measurement 
of the position-difference and the momentum-sum, s - .~ and p + p~, in 
the extended Hilbert space ~ | ~ .  Such a quantum measurement can 
be implemented in some quantum optical systems (Lai and Haus, 1989; 
Ban, 1996). 

There is another Naimark extension ~(Ar, Ak) of the operational POVM 
(I(A, Ak) which is constructed in terms of the relative momentum state 
Iv(r, k))) given by (3.32), 

~ r, Ak) = f dr f dk Iv(r, k)))((v(r, k)l (3.47) 
Jr EA r Jk ~A k 

which satisfies the relations obtained by replacing ~ with ~ in (3.36)-(3.40). 
Here we introduce a statistical operator ~" defined on the auxiliary Hilbert ~,,, 

' > < p,, = Im a[ ( - - l )  m+n nl6rlm a nl (3.48) 
m = 0  n = 0  

which satisfies the relations 

a(xlO'aly)a = (-y16-1 - x), a(UlO'lV)a = (vlt~lu) (3.49) 

Therefore, using the same method of deriving (3.46), we can obtain the 
expression for the operational phase-space probability, 

~ Ak) = Tr[I~l(Ar, ADO] = TrTr,[~(A~, ADO | fi'] (3.50) 

The quantum measurement described by the projection-valued measure ~(Ar, 
Ak) is the simultaneous measurement of the position-sum and the momentum- 
difference, .f + .~, and p - Pa, in the extended Hilbert space ~ | ~ , .  As 
seen from the above results, the Naimark extension of the operational POVM 
is not unique. This means that there are many standard quantum measurements 
in the extended Hilbert space ~ | ~a that correspond to the operational 
phase-space measurement in the original Hilbert space ~ .  It should be noted 
that the statistical operators ~ a  and I~" are related by 

P~ = ~a[ )a~a ,  ~)a : ~'~a~)ta~a (3.51) 
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where f a  is the parity operator defined on the Hilbert space ~a  (Royer, 1977), 

f a = f ~  d x l - x ) a a ( x l = f ~  dpl-P)aa(pl  (3.52) 

which satisfies the relations fia t = f a  and f z = ]~. 
Next we consider the Naimark extension of the marginal operational 

POVM given by (3.19) and (3.20). Using the projection-valued measures 
~(A r, Ak) and ~ Ak), we find from (3.25) and (3.32) that their marginal 
projection-valued measures defined on the extended Hilbert space ~ | ~ ,  
are given by 

~r(Ar) = ~(Ar, R) = f dr I ~ dx Ix + r)(x + rl | Ix)~ a(Xt (3.53) 
Jr e a r  

~k(Ak) = ~(R, Ak) = dk dp Ik - p)(k - pl | Ip) a a(pl (3.54) 
E A k 

~r(Ar) = ~(Ar,  R) = ~ dr (~ dx Ir - x)(r - xl | IX)a a(Xl (3.55) 
Jr A r 

~k(Ak) = ~ A , ) =  ~ dk F dp 'p + k)(p + kl | 'P)a o(P' (3.56) 
Jk EAk 

It is easy to see from (3.46) and (3.50) that the marginal phase-space probabil- 
ity distributions ~Wr(Ar) and ~W'k(A~) are expressed as 

~/'r(Ar) = Tr[I~Ir(Ar)0] 

= TrTra[~gr(Ar)f) | 15a] = TrTr,[~r(Ar)15 | 15"] (3.57) 

~l/'k(Ak) = Tr[1-~Ik(Ak)15] 

= TrTra[~gk(Ak)15 | 15a] = TrTr~[~k(Ak)15 | p'] (3.58) 

where the statistical operators 15a and ~" are given, respectively, by (3.41) 
and (3.48) and we have used relations (3.42) and (3.49). Therefore we have 
found that the projection-valued m e a s u r e s  ~,r(Ar) [~ ] and ~g~(Ak) [~ 
are the Naimark extensions of the marginal operational POVM IIr(Ar) 
[~k(Ak)]. 

3.3. Measurable Quantity and Fuzzy Observable 

We finally consider the observable quantities measured in the operational 
phase-space measurement. Since we have obtained the POVM for the opera- 
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tional phase-space measurement, it is easy to obtain the observable quantities. 
It should be noted here that the operational POVM is not a projection-valued 
measure and so the observable quantity does not become a Hermitian operator. 
Such a physical quantity is called a semiobservable, unsharp observable, or 
fuzzy observable (PrugoveEki, 1973, 1974, 1975, 1976a, b, 1977; Twareque 
Ali and Emch, 1974; Twareque Ali and Doebner, 1976; Twareque Ali and 
Prugove~ki, 1977a, b; Morato, 1977). 

Recall that the operational positionmeasurement on the physical system 
is described by the operational POVM IIr(Ar) given by (3.19) or (3.23). Thus 
the measured quantity, which is an analytic function ~(x) of position, is 
expressed as 

~(~) = I ~ ~(x) [Ir(dx ) (3.59) 
J ~ c r  

where ~lr(dx) = l~Ir(Ar) lar-~(x.x+dx). If the operational POVM were a projection- 
valued measure, this equation would have been the spectral decomposition 
of the Hermitian operator ,~(s For example, when ~(x) = x n, substituting. 
(3.19) or (3.23) into (3.59), the measured quantity (fuzzy observable) x n 
becomes 

x n = dr rnf(2 - r) 

= I~_ dr (2 - r) nf(r) 

= ~ (n)(--1)m2n-mf~-~ 

where (,~) is the binomial coefficient. It is easily seen from this equation that 
x ~ # (2) ~, which is characteristic of the unsharp or fuzzy observable. When 
~(x) is an analytic functl.ion which is expanded as ~(x) = En~,x  n, we obtain 
the fuzzy observable ~(x) measured in the operational position measurement, 

o~x) = ~ ~ ,  ( -1 )m2"- ' r r [~6-1  (3.61) 
m = O  

In the same w~ay, using (3.20) or (3.24), we can obtain the fuzzy momen- 
tum observable ~(k) in the following form: 

= I fI (dk) 

= ~ n ' n ~ ( n )  (3.62) 
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where [l~(dp) = (Ik(Ak)lAk-.~p.p§ and we have assumed that the function q~(k) 
is expanded as ~(k) = E,~,k ' .  It is easy to see from (3.61) and (3.62) that 

A A 

~(x) 4: ~($), ~(p)  4: ~(/~) (3.63) 

In particular, when we set ~(x) = exp(ilax) and ~(p) = exp(ip~p), we obtain 
A 

exp(il.~) = exp(ip~) Tr[exp(-ila~)6"] (3.64) 
A 

exp(ilxp) = exp(ilx/~) Tr[exp(-ip4~)6-] (3.65) 

which yield the characteristic functions for the operational position and 
momentum measurements. 

Before closing this section, we consider the squeezed-vacuum state as 
the quantum-filter state, namely, ~ = l',/)('yI, where the quantum state I~/) is 
given by (2.32) and the squeezing parameter ~/ is real. In this case, the 
operational POVM l~I(Ar, Ak) is given by 

I I~ d2~ Itx' ~/)(1~'~/I (3.66) f I ( A r ,  = 

where I~, ~/) = /)(I~)S(~/)I0) is the coherent-squeezed state of the physical 
system (Yuen, 1976; Walls and Milburn, 1994). Then we obtain the marginal 
operational POVM, 

[Ir(Ar)-e~,l-~fr~ardrexp[-(2-rl 2] \ e ~ ,] J (3.67) 

(-lk(Ak)--e-!v/~fkEakdkexp[--(~-vk) 2] (3.68) 

by means of which the fuzzy observables of the nth power of position and 
momentum are calculated to be 

~-x" = [~1 (2j) F(J + �89 e x p ( n  j=0 F ( � 8 9  2J~/)~'-2i (3.69) 

p n  ~ _ _  j=0 2j r(�89 exp(-2J"/)P"-2J (3.70) 

where F(x) is the gamma function (Abramowitz and Stegun, 1970) and [x] 
is the maximum value of the integer less than or equal to x. In particular, 
we have 

x ' =  $, x'~ = ~2 + �89 (3.71) 

-~"-= p, p~Z =/32 + �89 (3.72) 
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The observable quantity measured in the operational phase-space measure- 
ment includes the fluctuation caused by the measurement apparatus in addition 
to the intrinsic fluctuation appearing in the quantum state of the physical 
system. In particular, when - ~ / > >  1 (~ />>  1), we obtain ~ = 3~ 2 (p"~= 
p2). In this case, the additional fluctuation caused by the measurement appara- 
tus does not come in the position (momentum) measurement, though the result 
of the momentum (position) measurement becomes completely uncertain. 

4. STATE CHANGE IN OPERATIONAL PHASE-SPACE 
MEASUREMENT 

4.1. State Change in Position Measurement 

When we perform a quantum measurement on a physical system, we 
can obtain some information about the quantum state of the measured physical 
system. At the same time, the quantum state of the physical system is changed 
into another quantum state by the effect of the quantum measurement from 
which we obtain the information. Therefore, in this section, we investigate 
the state change of the physical system caused by the operational phase- 
space measurement considered in Sections 2 and 3. The state change of the 
physical system is mathematically described by an operation or a completely 
positive instrument in the most general way (Davies, 1976; Helstrom, 1976; 
Holevo, 1982; Kraus, 1983; Busch et al., 1995; Ozawa, 1984, 1993). So we 
will obtain the operation that describes the state change caused by the opera- 
tional phase-space measurement. An arbitrary operation is expressed as a 
superoperator which transforms an operator into another operator (Fano, 
1957; Crawford, 1958; Prigogine et al., 1973; Schmutz, 1978; Umezawa, 
1993). It should be noted that superoperators are equivalent to thermofields 
(Umezawa et al., 1982; Umezawa, 1993). 

Let ~(Ar, Ak) be the operation that describes the state change of the 
physical system when the outcomes r and k of the operational phase-space 
measurement belong to the ranges Ar and Ak. It should be noted that in this 
paper, a symbol with double caret such as O stands for a superoperator and 
a symbol with single caret such as 0 represents an operator. Then, using the 

operation ,,~(Ar, Ak), we express the state change of the physical system as 

ib ---> ~ (4.1) 
Tr[~(A~, Ak)~] 

where we have assumed that Tr[~(A~, Ak)O] =~ 0. The probability that such 
a state change occurs in the operational phase-space measurement is given 
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by Tr[~(Ar, Ak)O]. Thus the operation ~(mr, mk) is related to the operational 
POVM II(Ar, Ak) by 

W(Ar, Ak) = Tr[lCl(Ar, A~)IS] = Wr[~(Ar, Ak)O] (4.2) 

where W(Ar, Ak) and I~l(Ar, Ak) are given by (2.4) and (3.8). To obtain the 

operation ~(Ar, Ak) which satisfies the relations (4.1) and (4.2), we have to 
assume the interaction Hamiltonian between the measured physical system 
and the measurement apparatus. We first investigate the operations for the 
operational position and momentum measurement and then we consider the 
simultaneous measurement of position and momentum. 

We now consider the standard model of the position measurement on 
a physical system, where the interaction Hamiltonian between the measured 
physical system and the measurement apparatus is given by 

/'~int = g2 | (4.3) 

where the parameter g represents the strength of the interaction and/~a is the 
canonical momentum operator of the measurement apparatus. Any quantity 
concerned with the measurement apparatus is expressed with a subscript a, 
such as 0 and IO)a. To investigate the state change induced by the measurement 
process, suppose that the physical system is in the quantum state ~ and 
the measurement apparatus is prepared in the quantum state ~, before the 
interaction. Furthermore, we assume that the interaction is turned on at t = 
0 and the duration of the interaction is p = l/g, for the sake of simplicity. Then 
the composite quantum state if" of the physical system and the measurement 
apparatus after the interaction becomes 

= ~"(1~ @ ~a)~/t (4.4) 

with 

f '  = exp( - i2  | (4.5) 

It is important to note that what we know about the physical system is 
the outcome exhibited by the measurement apparatus, while we cannot directly 
get the value of the physical quantity of the system. Thus the situation in 
which the measurement apparatus shows the position value in the range Ar 
is described by the projection-valued measure of the measurement apparatus, 

~.(Ar) = ( dr ]r}a a(r] (4.6) 
Jr ~ r  

where Ir)a is the eigenstate of the position operator 2a of the measurement 
apparatus with eigenvalue r. When we obtain the measurement outcome r e 
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Ar, the nonnormalized statistical operator Wr(Ar) of the quantum state of the 
physical system after the measurement is calculated from (4.4)-(4.6), 

~Vr(Ar) = Tra[(i | ~a(Ar))l~'] 

= ~ dr a(rlIT( b | 0.)Q+lr)~ 
Jr E A  r 

=fr~ardrf~_ dx f~  dylx)(xlOly)<Y I 

X (e -x ~Udr ~(rl)13~(e -y d/drlr)~ ) 

=fr  d r f ~ d x f ~ =  dylx)(xloly)(yl~(r-xlo~lr-y)~ (4.7) 
E A  r 

where we have ignored the unimportant free time-evolutions of  the physical 
system and the measurement apparatus, for the sake of simplicity. 

To proceed further, we introduce the spectral decomposition of the 
statistical operator ~a of the measurement apparatus, 

0,~ = ~] pjl~y)o ~(~jl (4.8) 
j ~ Y  

where 5 ~ stands for the spectral set of  the statistical operator 0, and the 
eigenvalue pj satisfies the relations 

pj ~ O, ~ pj -- 1 (4.9) 
je9 ~ 

Substituting (4.8) into (4.7), we find that the nonnormalized statistical operator 
Wr(Ar) becomes 

v~Vr(Ar):frEArdrj.~fPJf~ dxf~r dy 

• Ix><xl( , ly><yl~j(r  - x ) ~ y ( r  - y )  

=Ir EA r jE~ 

• Ix)(xl~j(r - 2)O~](r - 2)ly)(yl 

= ( dr ~ pj,j(r - 2)(J,t(r - 2) (4.10) 
Jr EAr jE~ 

where the wave function ~y(x) is given by +y(x) = a(xl~y)a and we have used 
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the eigenvalue equation of the position operator $ of the physical system 
such as 

t~j(r - .~)ly) = ~j(r - y)ly) (4.11) 

Therefore from equations (4.7) and (4.10), we obtain the operation Yr(Ar) 
that describes the state change of the physical system caused by the posi- 
tion measurement, 

~r(Ar)O = dr dx dy ~p(r - x, r - y)lx)(xlOly)(yl 
e A r o~ co 

= f dr .~, pj%(r - $)t3r - Yc) (4.12) 
Jr EAr JEc, f 

where the integral kernel ~,(x, y) is given by ~,(x,  y) = a<xl0~ly> ~ and 0 
stands for an arbitrary operatory defined on the Hilbert space of the physical 
system. When we introduce superoperators ~+ and ~_ by ~+A = ~A and ~_A 
= .4t~ + for any operator .4, it is easy to see that the operation ~r(Ar) is 
expressed as 

~r(Ar) = dr ~p(r - ~+, r - .~__) 
e A r  

Our next task is to show that the operation ~r(Ar) given by (4.12) 
describes the state change of the operational phase-space measurement of 
position. To this end, we have to show that the relation (4.2) is satisfied by 
the operation )r(Ar), where the operational POVM~flr(Ar) is given by (3.19) 
or (3.23). If the relation is valid for the operation ~r(Ar), the POVM IIr(Ar) 
in (4.2) is calculated as 

l~I,(Ar) = f dr 2 pjt~J(r - fc)djj(r - ~) 
Jr EA r je~ 

= f r  drf~-o~ dx2p j l t~J ( r -x )121x) (x l  
EAr j e ~  

= i dr I~_~ dx a ( r -  x lOalr -  x)alx)(xl (4.13) 
r e A r  

Here let us define the quantum-filter state # of the physical system by 

(xlOly) = ~ pj~j ( - -y ) t~( - -X)  (4.14) 
jeff 
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Using this quantum-filter state, the POVM I~I,(A,) becomes 

dr (x - rl6rlx - r)lx)(xl FIr(Ar) = [rea dr[~_~ 

= f ~ a d r f [ ~  

= friar 

dx f (x  - r)lx)(xl 

dr f(s  - r) (4.15) 

where f (x )  = (xl~lx). Comparing this result with (3.19) or (3.23), we find 
that l~Ir(Ar) is the operational POVM of the phase-space position measurement. 

Thus the operation ~r(Ar) given by (4.12) describes the state change of 
the physical system caused by the operational phase-space measurement 
of position. 

Therefore, when we obtain the measurement outcome r �9 A~, the statisti- 
cal operator 15~(A~) of the quantum state of the physical system after the 
measurement is given by 

~r(A~)~ ~AA~)~ ~(~)~ 
[)r(Ar) Tr[~,(Ar)l~] Tr[I*I,(A,)O] CWr(Ar) (4.16) 

This result will be used to investigate the information about the physical 
system extracted from the operational phase-space measurement in Section 5. 

4.2. State Change in Momentum Measurement 

We next consider the state change of the physical system caused by the 
momentum measurement. In this case, the interaction between the physical 
system and the measurement apparatus is given by the interaction 
Hamiltonian, 

/'tint = g]~ ~/Oa (4.17) 

Remember that we denote the eigenstate of the position operator as lu) and 
the eigenstate of the momentum operator as lu). Thus, for example, we have 
s = klk) and/~lr) = rlr). When the quantum states of the physical system and 
the measurement apparatus before the interaction are given by the statistical 
operators i~ and Oa, their composite quantum state W after the interaction 
becomes 

1~ = O(O | t~,,)O* (4.18) 
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with 

0 = exp(-i15 | 15a) (4.19) 

where we set the initial time t = 0 and the interaction time "r = 1/g. 
Suppose that we read the value of the position variable of the measure- 

ment apparatus to get the information about the momentum of the physical 
system. The measurement apparatus that shows the position value in the 
range Ak is described by the projection-valued measure, ~a(Ak) = fxEak dx 
IX)a a(Xl. Thus, when we obtain the measurement outcome k e Ak, the 
nonnormalized statistical operator Wk(Ak) of the quantum state of the physical 
system after the measurement is calculated as 

ff'k(Ak) = Tra[j  ~) ~a(Ak))~ tr] 

= f dk a(klO(~) (~ pa)O~flk>a 
Jk EAk 

= Ikeakdk f~oodu f~ dv lu)(ulOIv)(vl(eaUd/dk(kl)pa(e-vd/dklk)a) 

-- fkEAk dk J~o du f~oo dv lu)(ulOlv)(vla(k - ulOalk - v)a (4.20) 

Furthermore, assuming the spectral decomposition of the statistical operator 
Pa given by (4.8), we obtain the expression 

t" 

Jk ~Ak j E ~  

(4.21) 

where Oj(k) = a(kl~j}a and we have used the eigenvalue equations of the 
momentum operator such as Oj(k - 15)1u) = Oi(k - u)lu). Therefore we obtain 

the operation ~Ek(Ak) that describes the state change of the physical system 
caused by the momentum measurement, 

~k(Ak)O = dk du dv '~m(k - u, k - v)lu)(ulOIv)(ul 
~Ak 

= Ik dk ~ pj,j(k - ff)b~J(k - 15) (4.22) 
eAk J~g 

where we have defined the integral kernel ~m(U, v) = a(Ul~alV)a and 0 is an 
arbitrary operator defined on the Hilbert space of the physical system. 
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It is easy to show from (3.20) or (3.24) that when we define the quantum- 
filter state d" of the physical system by 

(ul#lv) = ~] pfl/ j(-v)t~7(-u) (4.23) 
jESf 

the operation ~k(Ak) given by (4.22) satisfies 

~/'k(Ak) = Tr[~k(Ak)15] = Tr[10k(Ak)15] (4.24) 

where l~Ik(Ak) is the operational POVM of the momentum measurement, 
~hich is given by (3.20) or (3.24). Therefore we have found that the operation 
~k(Ak) describes the state change caused by the operational measurement of  
momentum. The quantum state of  the physical system after the operational 
measurement of  momentum is given by the following statistical operator: 

~k(Ak)15 ~k(Ak)15 ~k(Ak)15 
15~(Ak) - Tr[~k(Ak)15] Tr[I]k(Ak)15] 24/'k(Ak) (4.25) 

The operation ~k(Ak) and the operational POVM l~lk(Ak) completely character- 
ize the operational phase-space momentum measurement on the physical 
system. 

4.3. State Change in Simultaneous Measurement of Position and 
Momentum 

We finally consider the state change of the physical system caused by 
the simultaneous measurement of position and momentum (Arthurs and Kelly, 
1965; Busch, 1985; Stenholm, 1992; Braunstein et al., 1991). It will be 
found later that this measurement is equivalent to the operational phase-space 
measurement. In this case, we have to prepare two measurement apparatuses 
as A and B; one "A" for the position measurement and the other "B" for the 
momentum measurement. Here we denote quantities of  the measurement 
apparatus A with subscript a, such as Oa and I~)a, and quantities of the 
measurement apparatus B with subscript b, such as Ob and It~)b. The interaction 
between the physical system and the measurement apparatus is assumed to 
be given by the Hamiltonian, 

flint = g(.f | p,~ | ib + 1~ | la ~ PO) (4.26) 

Suppose that the measurement apparatuses are initially prepared in the quan- 
tum state 15ab which is not necessarily factorized into 15a | 150. Therefore, 
after the interaction during "r = 1/g, the composite quantum state if" of the 
physical system and the measurement apparatus becomes 

~V : 7"(15 @ 15ab)T "t" (4.27) 
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with 

1" = exp[ - i (~  | | Ib "{- P ~ ]a {~ Pb)] (4.28) 

To know the position of the physical system, we read the position value 
exhibited by the measurement apparatus A, and to know the momentum of 
the physical system, we read the position value exhibited by the measurement 
apparatus B. When the position values r and k of the measurement apparatuses 
A and B belong to the ranges Ar and A k, the projection-valued measure 
~ab(Ar, Ak) of the measurement apparatus becomes 

~ab(Ar, Ak) = ~a(Ar) |  ~b(Ak) = ~ dr ~ dk Ir)a a(rl | Ik)b b(kl 
J, reAr  Jk eAk 

(4.29) 
Thus the nonnormalized statistical operator ff'(A r, Ak) of the postmeasurement 
state of the physical system is given by 

ff'(Ar, Ak) = TraTrb[j | ~gab(Ar, Ak))l~] 

=Ir drlk dkab(r, kll;VIr, k)ab (4.30) 
EA r eAk 

where we set Ir, k)ab = Ir>~ | Ik)b. 
To calculate the right-hand side in equation (4.30), we introduce the 

spectral decomposition of the statistical operator ~)ab by 

~)ab = ~ Pjlt~j)ab ab(ll~j I (4.31) 
j e ~  

where pj >-- 0 and Zjeu pj = 1 are satisfied. Here, oR stands for the spectral 
set of  the statistical operator Pab- If the statistical operator I~,b is factorized 
into ~a | Pb, we have 

j = (j., jb)  E oRa X oRb = oR, PY : PJaPJb and 

[l~lj>ab ~. {l~ja> a ~ II~jb>b 

Substituting equation (4.31) into equation (4.30), after some calculation, we 
can obtain the following expression: 

1 [r drfk dkf~ du l/~r(Ar' Ak) = (2"rr)2 ear ~ak 

• ~s U'; V, v')e-i[u(s 

Jr EA r Jk eA k j e ~  
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where we have defined 3~p_m(U, u'; v, v') = oh(u, vll~hlu', V')ob with lu, v)oh 
= lu)o | Iv)0, and r k) is an operator defined on the Hilbert space of the 
physical system, 

Yj~r, k) = ~ du dv ab(U, l?l~Jj>ab exp[-iu($ - r) - iv(fi - k)] 

= D(r, k)C[jbt(r, k) (4.33) 

Here D(r, k) is the displacement operator given by (2.1) and the operator "Y'j 
is given by 

2~r 

1 

dv ab(U, Vl~Jj)ab exp[- i (u~ + v/~)] 

dv oh(u, - v l * ) o d g t ( v ,  u)  

dy ob(--X, --Ylt~j)ohT(x, Y) (4.34) 

where the operator T(x, y) is the double Fourier transform of the displacement 
operator D(v, u), which is defined by 

7"(x,y) = 2"rr | - -  du dv L)(v, u)e -i(ux--vy) 

1 It d2~/5(~)e '~*-~*~ T(~x) 
"IT E R 2 

(4.35) 

In this equation, the complex variables ~ and a are given by ~ = (v + 
iu)l,l/-2 and oL = (x + iy)lv/-2. The operator ~P(x, y) becomes Hermitian and 
satisfies the following relations (Cahill and Glauber, 1969a, b; Agarwal and 
Wolf, 1970a-c): 

Tr[2P(x, y)Tg(x', y')] = 2-trg(x - x ' ) g ( y  - y ' )  (4.36) 

Tr[f'(oOf'(13)] = ~rS<2>(a - 13) (4.37) 

Therefore we have found the operation ~(Ar, Ak) that describes the state 
change of the physical system caused by the simultaneous measurement of 
position and momentum, 
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~(ar,&)0-1 I~ drlk d~I~du 
(2" r r )  2 eAr eAk 

X ~p-m(U, u'; v, v')e-itu(~-")+V(l~-k)]Oeil"'('e-r)+v'(t}-'~)l 
/-  /-  

: / , , r /  d,, , , , > ,  , , ) 0 > ,  ,,,  4.38) 
Jr EA r Jk EA k J e~ 

where 0 stands for an arbitrary operator defined on the Hilbert space of the 
physical system. 

Next we investigate the relationship between the operation ~(A r, Ak) 
and the operational POVM I](A.  Ak) of the operational phase-space measure- 
ment. For this purpose, we introduce an operator 6 defined on the Hilbert 
space of the physical system by 

IL L [ 1 (~, 
~r = -2--~ dx dy dy' 

r 

X ab(-x, -yll3abl - x', -Y')ab l"(x', y')r y) 

_ 1 [_ du, I ]  dv, 27r f? du l?  dv " 

x aAU, --VlOablU', --V'LO b(V', u')b*(v, u) (4.39) 
First it is easy to see from (4.36) that the operator 6" is normalized as 

Tr(r = dy ,~b(x, yllS~blx, Y}ab 

= TraTrbOab = 1 (4.40) 

Next we show that 8 is a nonnegative Hermitian operator. To this end, we 
calculate {(I)1(314)} for an arbitrary state vector 14)) in the Hilbert space of the 
physical system, 

1 

X ab(U, --I/l~)ablU t, --Vt)ab (4)lO(v t, ut)O?(1J, u)14)) 

X ab(U, --vl~j)ab ab(@U', --V')ab (4)iD(v', u')Dt(v, u)14)) (4.41) 
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where we have used the spectral decomposition of the statistical operator ~,,b 
of the measurement apparatus given by (4.31). We now define a state vector 
I~j) in the Hilbert space of the physical system by 

,%> = f[ du f[ dv b*(v, u)l+> o (u, (4.42) 

Using this state vector, we finally obtain the inequality 

(qbl6-1~b) = ~] pj(~jl~j) >-- 0 (4.43) 
jest 

which indicates that the operator ~- is nonnegative. Furthermore, it is clear 
from the definition that 6- is a Hermitian operator. Thus we have found that 
the operator d- given by (4.39) becomes the statistical operator defined on 
the Hilbert space of the physical system and we can consider the quantum 
state described the statistical operator # the quantum-filter state of the physi- 
cal system. 

Therefore, using equations (4.33), (4.34), (4.38), and (4,39), we can 
obtain the relation 

cl4/'(Ar, Ak) = Tr[~(Ar, A,)fi] = Tr[I~I(A,, Ak)~] 

_ l f ~  drfk Tr[fj[)(r,k)(rlOt(r,k) ] (4.44) 
2at E A  r E A  k 

where l~I(Ar, Ak) is the operational POVM given by (3.8). This result indicates 
that the operation ~(Ar, Ak) given by (4.38) describes the state change of 
the physical system caused by the operational phase-space measurement of 
position and momentum. The quantum state of the physical system after the 
operational phase-space measurement is given by the following statistical 
operator: 

~(Ar, Ak) b ~(Ar, Ak)p ~,~(Ar, Ak)p 

fi(Ar, Ak) = Tr[~(Ar, Ak)~] = Tr[[I(Ar, A~)IS] ~4/'(Ar, Ak) (4.45) 

The operational phase-space measurement is completely characterized by the 
operation ~(Ar, Ak) and the operational POVM I~I(A~, A~). 

Let us consider the case that the quantum states of the measurement 
apparatus are prepared in the squeezed-vacuum states, 

Pab = ]~)aa('Y I ~ I~/')bb(~/'l (4.46) 

where the squeezing parameters ~/and ~/' are assumed to be real. In this case, 
we obtain 

a(--xl'y)a b(--yl'Y')b - -  ~ exp --~ ~ + ~ (4.47) 
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In particular, when we set the squeezing parameters ~/ = ",/' = �89 In 2, the 
operator Yj given by (4.34) becomes 

I~ d2o~ l"(eOe-'~12n 
"Y" = 7r,J2"rr ~ R  2 

- 'rr ~ 1  f,~,R 2 d2ot/)(a)e-lal2/2 

1 
= - ~  t0)(01 (4.48) 

It should be noted here that the index j of the summation does not appear, 
since the quantum state Oab of the measurement apparatus is pure. Thus the 
operation ~(Ar, Ak), the operational POVM l~l(Ar, Ak), and the operational 
phase-space probability ~14C(Ar, Ak) of the simultaneous measurement of posi- 
tion and momentum are given by 

1 f~ d2la, IIX)(IXlOIIX)(IXl (4.49) 

1 Iv d2ix IIX)(IXl (4.50) 

~/'(A~, Ak) = 1 f d2l.t (IXI~IIX) (4.51) 
'IT Jl~ E~rX~k 

where IIX) is the coherent state with Ix = (r + ik)l,f2. The operational POVM 
given by equation (4.50) is equivalent to that of the ideal optical heterodyne 
detection (Yuen and Shapiro, 1978, 1980; Shapiro et al., 1979; Busch et 
el., 1995). 

Before closing this section, we consider the case that we do not read 
the result of the position (momentum) measurement in the simultaneous 
measurement of position and momentum. When we do not read the outcome 
exhibited by the measurement apparatus B, the operation ~r(A) of the mar- 
ginal position measurement becomes 

^ 

 (• =  e(zX , R)O 

1 dr dv du' ~t,-m(U, U'; --V, --V) 
27r ~a~ 

• e -i~ u)e i@Oe-irp~)(V, u')e irt~ (4.52) 
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and the corresponding marginal POVM l~lr(Ar) is given by 

l~Ir(A,) = dr dx fp_m(X - r)lx)(xl (4.53) 
E A  r ao 

where fp-m (x) = a(--XlOal -- X)a is the filter function, and the effective 
statistical operator 6a of the measurement apparatus A is given by 

[ ( '  ) d'a = Trb exp --~ il~, | fib Dab exp ira | fib (4.54) 

The unitary operator exp(-�89 | fib) represents the quantum correlation 
between the measurement apparatuses A and B through the measured physical 
system. Mathematically, this unitary operator appears when we decompose 
the unitary operator 1" given by (4.28) into 

]" = exp( - i f  | L | fib) exp(--i2 | fa | ib) exp --~ i] | ft, | fib 

to trace out the variables of the measurement apparatus B. When we define 
the quantum-filter state ~ by the relation (xld-ly) = ,( -yl6-~l - x)~, equation 
(4.53) becomes equivalent to equation (3.19). 

On the other hand, when we do not read the outcome exhibited by the 
measurement apparatus A, the operation ~,(Ak) of the marginal momentum 
measurement becomes 

~k(Ar)0 = ~(R, Ak)0 

= 1 dk du dv dv' ~/?p-m(U, U; --V, --V') 
e A  k ~ 

• e i~i)t(v, u)e -iUOeik~6(v', u)e - iu (4.55) 

and the corresponding marginal POVM lr is given by 

I]k(AD = dk dp gp-m(P - k)lp)(pl (4.56) 
~Ak 

where gp-ra(P) --- ~(--Pl6"bl -- P)a is the filter function and the effective 
statistical operator ~b of the measurement apparatus B is given by 

[( ) ( ' ) ]  #b = "Ira exp ~ if~ | Pb [Jab exp ipa  | fib (4.57) 

The unitary operator exP(�89 ifo | Pb) also represents the quantum correlation 
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between the measurement apparatuses A and B through the measured physical 
system, which appears when the unitary operator l~ is decomposed into 

(' ) = exp(- /2 | ]~a @ lib) exp(-i/~ | ia | exp ~ ii | | 

to trace out the variables of the measurement apparatus A. Therefore, introduc- 
ing the quantum-filter state # by the relation (uld-lv) = b( - -  vlCrbl --  U)b, we 
find that (4.56) is equivalent to (3.20). 

In this section, we have assumed the interaction Hamiltonians (4.3), 
(4.17), and (4.26) between the physical system and the measurement apparatus 
to obtain the operations that describe the state change of the physical system 
caused by the operational phase-space measurements. If we assume a different 
interaction Hamiltonian, we obtain a different operation that corresponds to 
the operational POVM. 

5. ENTROPY AND INFORMATION IN OPERATIONAL PHASE- 
SPACE MEASUREMENT 

5.1. Posit ion and M o m e n t u m  M e a s u r e m e n t s  

When we perform a quantum measurement on a physical system to 
obtain some information about its quantum state, the measured quantum state 
of the physical system is changed into another quantum state by the effect 
of the quantum measurement. Thus the entropy of the quantum state also 
changes in the quantum measurement. In Section 4, assuming the interaction 
Hamiltonian between the physical system and the measurement apparatus, 
we obtained the operation that describes the state change caused by the 
operational phase-space measurement. In this section, using the results, we 
will investigate the entropy change of the quantum state and the information 
gain in the operational phase-space measurement. For this purpose, we apply 
the measurement entropy (Ballan e t  e l . ,  1986), but not the von Neumann 
entropy, since we would like to know the information about the observable 
quantity, such as the position and momentum of the physical system, in the 
operational phase-space measurement. Furthermore, we consider the relation- 
ship between the entropy change and the Shannon mutual information (the 
mean information content) extracted from the outcomes exhibited by the 
measurement apparatus (Shannon, 1948a, b; Brillouin, 1956; Majernik, 1970, 
1973; Cover and Thomas, 1991). The Shannon mutual information serves as 
a measure of the statistical linkage between the premeasurement system and 
the measurement apparatus. 
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For the physical system prepared in the quantum state 15, when we 
observe a quantity described by the Hermitian operator 0, we obtain the 
value a as the measurement outcome with probability or probability density 

P ( a) = (l~la115[l~Ja) (5.1) 

where IOa) is the eigenstate of the operator 0 with eigenvalue a, that is, 
Olt~a) = al~a). If the operator 0 has a discrete spectrum, the measurement 
entropy is given by 

S = - ~ P(a) In P(a)  (5.2) 
a~.~ 

where ~ stands for the spectral set of the operator O and we measure the 
entropy in nats. If the operator 0 has a continuous spectrum, the measurement 
entropy becomes 

S = - f  da P(a) In P(a) (5.3) 

which is called the differential entropy (Cover and Thomas, 1991). It is 
important to note that the entropy given by (5.2) is nonnegative, while the 
differential entropy defined by (5.3) can take negative values in some cases. 
In this section, we use the differential entropy, since we consider measure- 
ments of position and momentum observables which have continuous spectra. 

Suppose that the quantum state 15 of the physical system is changed into 
another quantum state 15' by the effect of the quantum measurement. Then 
the entropy of the system also changes as S ~ S'. The entropy change 
AS = S - S' of the quantum state is considered the information I gained by 
the quantum measurement (Brillouin, 1956) 

I = A S = S - S '  (5.4) 

In this section, we define the entropy change AS by subtracting the postmea- 
surement entropy from the premeasurement entropy. 

We first consider the entropy change or the information gain in the 
operational phase-space measurement of position. Before the measurement, 
the physical system is prepared in the quantum state 15. Thus the premeasure- 
ment entropy defined on the set of position probability distributions is given by 

S r  n = __ (o~ dr Pin(X) In Pin(X) (5.5) 

with 

Pin(X) = (xll~lx) (5.6) 



2622 Ban 

After the position measurement, when we obtain the measurement outcome 
r which belongs to the range Ar, the quantum state of the physical system 
is given by (4.16). In this case, the conditional probability density of position 
is calculated as 

p~ ) = (xlbr(r)lx) (5.7) 

which is conditioned by the measurement outcome r. Here the statistical 
operator ~r(r) is given by ~r(r) = lim~ar~--,0 I~r(Ar), where IArl is the width of 
the interval Ar. Then we obtain from (4.12) and (4.13), 

,:~r(r)O ~r(r)O _ .~r(r)p 
0r(r) Tr[~r(r)~] Tr[l~lr(r)~] Wr(r) (5.8) 

where the operation ~r(r), the operational POVM IIr(r), and the operational 
phase-space probability density Wr(r) are respectively given by 

~r(r )O = dr  dy g p ( r  -- X, r -- y)lx)(xlOly)(yl  (5.9) 

[Ir(r ) = f ~  dx ~p(r - x, r - x)lx)(xl (5.10) 

)l/'r(r) = f~-o~ dx ~p(r  - x, r - x)(xlOlx) (5.11) 

with ~p(X, y) = a(xlO~ly).. 
Thus the conditional entropy for the given measurement outcome r is 

obtained by 

S~ = -f[o~ dx p~ ) In P~ (5.12) 

Since the probability density that we obtain the measurement outcome r is 
given by (5.11), the average value of the conditional entropy of the physical 
system after the operational position measurement is calculated as 

S ~ = f~_~ dr ~/I/',.(r)S~ (5.13) 

Therefore, from equations (5.4), (5.5) and (5.13), the information/r obtained 
by the operational position measurement is given by the entropy change, 
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Ir = ASr = Sr n - S ~ (5.14) 

We now obtain the average value S r ~ of the conditional entropy of the 
physical system after the measurement. Since we obtain from (5.9) 

(xlfs = ,(r - XlOalr -- X)a(XlOIX ) (5.15) 

we can calculate the average value S ~ of  the conditional entropy from (5.7), 
(5.8), and (5.11)-(5.13), 

Sr ~  dr dx(xl~(r)OIx),n [ ~ ] 

= - j ~  dx(xlOlx)In(xlOlx)- (~ dx .(XlOalX)a In a(X [ pa lX) a 

+ f~-oo dr ~W~(r) In ~l/'r(r ) 

= Si  n + S ~fl) - Hr (5.16) 

where Sir " is the initial entropy of  the physical system and S~ ~) is the initial 
entropy of the measurement apparatus prepared in the quantum state 15,, 

S(fl) = - f~-o~ dx a(XlOalX)a In a(Xl OalX)a (5.17) 

Furthermore, the quantity Hr in (5.16) represents the differential entropy 
calculated from the operational probability density ~ of the measure- 
ment outcome, 

Hr = - f~-oo dr ~ ) In ~ ) (5.18) 

Therefore we obtain the expression for the information gain lr in the 
operational phase-space measurement of position, 

/~ = n~ - S~ ~) (5.19) 

This result indicates that the information about the physical system extracted 
from the operational position measurement is equal to the difference between 
the entropy calculated from the measurement outcomes exhibited by the 
measurement apparatus and the initial entropy of the measurement apparatus. 
It is easy to see that we have to use the measurement apparatus that has the 
smaller entropy to obtain more information about the measured physical 
system. 
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In the same way, we can obtain the information lk about the physical 
system gained in the operational momentum measurement. The information 
Ik is calculated by 

Ik = ASk  = S~" - S~ u' (5.20) 

where S~," is the entropy in the initial quantum state 15 of the physical system 
and S~ ut is the average value of the conditional entropy of the physical system 
after the measurement, which are given by 

- f ~  dp(p115[p) ln(pll~lp) (5.21) S~ n 

S~ ut = [~ dk ~l/'k(k)S?,"t(k) (5.22) 

I 

with 

S~Ut(k) = -J_.~ dp p~ut(plk) In P~Ut(plk) ( 5 . 2 3 )  

Here, ~q'k(k) is the operational probability density that we obtain the measure- 
ment outcome k in the momentum measurement, 

~l/'k(k) = f~-o~ dp 3~m(k - p, k - p)(plOIp) (5.24) 

where ~s v) = a(U115alV)a, and p~ut (plk) is the conditional probability 
density for the given measurement outcome k, 

P~,Ut(plk) = (plpk(k)lp) (5.25) 

where the statistical operator 15k(k) of the postmeasurement state of the physical 
system when we obtain the measurement outcome k is given by 

Yk(k)15 _ ~ek(k)15 _ Yk(~)15 

15k(k) = Tr[~k(k)15] Tr[I~lk(k)15] ~l/'k(k) (5.26) 

with 

~k(k)O = dv ~(,m(k - u ,  k - v)lu)(ulOIv)(vl (5.27) 

~Ik(k  ) = (~ du ~s - u, k - u)lu)(ul (5.28) 

These equations are derived from (4.22), (4.24), and (4.25). 
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Therefore we can obtain the expression for the information lk extracted 
from the outcomes of the operational momentum measurement, 

Ik = Hk -- S~ a) (5.29) 

where Hk is the differential entropy calculated from the operational probability 
density ~fl/'k(k) of the measurement outcome and S~ a) is the initial entropy of 
the measurement apparatus in the quantum state 15a, 

= - [ ~  dk ~l/'k(k)ln ~14/'~(k) Hk (5.30) 

-- I~o~ dp a(PlOalp) a In a(PlOalp)a (5.31) S~ ~) 

The result indicates that the information about the physical system obtained by 
the operational phase-space measurement of momentum is equal to the difference 
between the entropy calculated from the measurement outcomes exhibited by the 
measurement apparatus and the initial entropy of the measurement apparatus. 

5.2. Properties of the Information in the Quantum Measurement 

We now consider the properties of the information, Ir and Ik, given by 
equation (5.19) and (5.29). First we consider the case that the accuracy ~x of the 
position measurement is very high such that the condition ~x < <  cld(rlOlr>/drl 
can be satisfied, where c is some constant factor. In this case, we may assume 
that the quantum state of the measurement apparatus is approximated by a(XlO~Ix>a 
= (~X) -l forx ~ [--~x/2,  ~x/2) and a(xl(~alx)a = 0 forx ~ [ - ~ x / 2 ,  ~x/2).  Thus 
we can approximate the operational probability density ~t~r(r) given by (5.11), 

i CW'r(f ) "~" dx  r - xlOIr - x)  ~ (rllSIr) ~ P ( j )  (5.32) 
~x12 

where P ( j )  is the probability that the measurement outcome r belongs to 
the interval of the real axis, [rj - 8x/2 ,  rj + 8x /2) ,  and the discrete variable 
rj satisfies the relation rj+~ - rj = 5x for allj 's.  Note that the quantity (Sx) -~ 
appeared in the last term of (5.32) is due to the normalization condition, 
Z i P ( j )  = f~-o~ dr  r 1. Thus the differential entropy Hr given by 
(5.18) becomes 

- I ~  dr  (rll~lr) ln(rll~lr) nr 

~ - dr  -~x  In 
~i rj - gx/2 

= - ~ P( j ) ln  P ( j )  + ln(Sx) (5.33) 
i 
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and the initial entropy S (r a) of the measurement apparatus is approximated by 

- / dx  In = ln( x) (5 .34)  
.J - ~xl 2 

Therefore the information L about the physical system gained in the opera- 
tional position measurement is obtained from equations (5.33) and (5.34), 

I r = H r - -  S (a) ~ - ~ P(j)ln P ( j )  (5.35) J 
This result indicates that when the accuracy of the position measurement is 
very high, the information Ir is equal to the Shannon entropy (the information- 
theoretic entropy) calculated from the probability of the discretized position 
of the physical system in the initial quantum state P. The same result can be 
obtained for the operational momentum measurement. 

In quantum mechanics the position and momentum of a physical system 
cannot be measured simultaneously with very high accuracy due to the 
Heisenberg uncertainty relation for position and momentum, which is derived 
from the noncommutativity of position and momentum operators, namely, 
[$,/~] = i (h = 1). The uncertainty relation can be interpreted by means of 
the position and momentum entropies, which is called the entropic uncertainty 
relation (Bialynicki-Birula and Mycielski, 1975; Maassen and Uffink, 1988; 
Partovi, 1983). In our case, the entropic uncertainty relation of the measure- 
ment apparatus is given by 

S(r  a) -}- S ~  a) ~ -  In(we) (5.36) 

which is equivalent to the Heisenberg uncertainty relation, ~kxaApa ~ 1/2. 
For example, when the measurement apparatus is prepared in the squeezed 
state with real squeezing parameter % the probability distributions of position 
and momentum become 

o<x, o,x>o - ' [ _ : x  - e~v/-~ exp \ e~ ] J 

a ( P f O a l P ) a  - 1 [ (p_j~)2] 
e-~x/~ exp - (5.38) 

where .2 and fi are the real and imaginary parts of the complex amplitude of 
the squeezed state. Then we obtain the differential entropies of position 
and momentum, 

S(~ a) = �89 In(we t+2~), S~ ") = �89 In(we l-2v) (5.39) 

which yields the equality S(~ a) + S~, ~) = In(we), since the squeezed state with 
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real squeezing parameter is the minimum-uncertainty state in which ,~kXaApa 
= 1/2 is attained. 

On the other hand, it is shown that the differential entropies of position 
and momentum S(~ a) and S~ a) satisfy the inequalities (Hall, 1995), 

Sr(a) <- �89 ln(2rre) + In Z~kX a (5.40) 

Sl,(a)----- �89 + In Apa (5.41) 

which can be derived by the variational method. Therefore, we obtain the 
inequality 

S (a) -t.- S~ a) ~- ln(2~e) + ln(z~CaApa) (5.42) 

Using the relations (5.36) and (5.42), we find that the information lr and Ik 
obtained by the operational position and momentum measurements satisfies 

Hr + Ilk -- ln(2'rreAx,,Apa) <-- Ir + lk <-- Hr + Ilk -- ln('rre) (5.43) 

It should be noted here that the uncertainty product l~kxampa is calculated in 
the initial quantum state i~, of the measurement apparatus. In particular, when 
we use the measurement apparatus prepared in the minimum-uncertainty state 
which yields the equality Ax~Ap, = 1/2, we obtain the relation 

lr + Ik = Hr + Ilk -- ln(e~r) (5.44) 

Let us now consider the case that the measurement apparatus is prepared 
in a thermal state where the average value of the thermal photon number is 
given by ~. In this case, we obtain the position and momentum probability 
distributions of the measurement apparatus, 

_ 1 ( 
a(Xlffla}X)a ff'rr(l + 2B) exp 

1 ( 
a(plpalP)a x/ar(l + 2~) exp 

x2 ) 
1 ~ 2n (5.45) 

1 T 2~ (5.46) 

Thus the initial entropies S(~ ~) and S~ a) of the measurement apparatus are 
calculated as 

S(r a) = S~ a) -~. �89 + 2~)] (5.47) 

To proceed further, suppose that before the measurement, the physical system 
is in the coherent state Is) with complex amplitude a = (q + ip) / f f2 .  Then, 
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substituting (5.45) and (5.46) into (5.11) and (5.24), we obtain the operational 
probability densities ~ and W'k(k) of the measurement outcomes 

l [ (r - q)2 ] 
~W'r(r) - ~/2~r(1 + ~) exp ~-1 2~ n)J  (5.48) 

1 exp ~-1 ~-- ~ J  (5.49) 
W k ( k ) -  ~/2"rr(1 + ~) 

which yields the entropies for the results of the operational phase-space 
measurements, 

Hr = Hk = �89 + ~)] (5.50) 

Therefore we find the information about the physical system obtained by the 
position and momentum measurements from (5.47) and (5.50), 

l ln[  2-(1 +-n)]  (5.51) 
Ir I~ = - =  " = 2  L 1 + 2 ~ J  

which satisfies inequality 0 --< Ir (lk) --< In ,/2. The maximum value of the 
information that we can obtain by the operational measurement is 0.5 bits, 
which is attained by the measurement apparatus prepared in the vacuum state 
(~ = 0). Note that the fluctuations of  position and momentum in the thermal 
state of the measurement apparatus become Ax, = Ap~ = , f~ + 1/2. Thus 
we obtain the relation, 

n r  + I l k -  ln[2"rre~k,'caApa] = ln| 2-(1- +-n)] [_ 1 + 2~ J = lr + Ik (5.52) 

which means that the lower bound in (5.43) is attained in this measurement. 
If we know only the average value ~ of  the photon number of the 

physical system before the measurement, the quantum state 0 of the physical 
system is estimated by, according to the maximum-entropy principle (Jaynes, 
1957a, b), 

In)(nl (5.53) 
1 + ~ .=0 

In this case, the operational probability densities W'r(r) and ~ of the 
measurement outcomes are calculated as 

l [ r2 ] 
~W'r(r) = x/27r( 1 + ~ + ~) exp 2(1 + ~ + ~) (5.54) 

~W'k(k) = ~/2"rr(1 + ~ + ~) exp 2(i + ~ + ~) (5.55) 
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Therefore we obtain the information /r and I~ about the physical system 
extracted from the outcomes of the operational position and momentum 
measurements, 

I r = I k = ~ l n [  2(11+ m + n ) ] + 2 ~  (5.56) 

If we can ignore the effect of the quantum fluctuations of the physical system 
and the measurement apparatus (~ > >  1, ~ > >  1), equation (5.56) becomes 

Ir = I~ ~ "~ In 1 + (5.57) 

This result is similar to the classical capacity C ~ ln(l + S~ for the 
Gaussian communication channel, where the channel capacity is the maximum 
value of the mutual information (Shannon, 1948b; Cover and Thomas, 1991; 
Caves and Drummond, 1994) and 5~ (= ~/~) represents the signal-to-noise 
ratio in the communication channel. The position or momentum measurement 
corresponds to the homodyne detection in quantum optical systems. 

Finally we investigate the relation of the information L (Ik) calculated 
from the entropy change of the physical system to the Shannon mutual 
information ~r (~k) obtained from the measurement outcomes. The Shannon 
mutual information ~r for the position measurement is given by (Shannon, 
1948a, b; Brillouin, 1956; Cover and Thomas, 1991) 

~" = o~ dx dy P(xly)Pin(y) - , n [ ~ j F  P(xly) ] (5.58) 

where P~n(x) and Pout(X) are the input and output probability densities, and 
P(xly) is the conditional probability density which connects the input probabil- 
ity density with the output probability density, 

Po.t(x) = f f .  dy P(xly)Pin(y) (5.59) 

The Shannon mutual information ~k obtained in the momentum measurement 
is defined in the same way. 

In our case of the operational phase-space measurement, the input proba- 
bility corresponds to the initial (or the premeasurement) position probability 
of the physical system in the quantum state ~ and the output probability to 
the operational position probability. Thus we find that Pin(X) = (XllSIX) and 
Pout(X) = ~tllfr(X). Furthermore, comparing (5.11) with (5.59), it is easy to see 
that the conditional probability density is given by P(xly) = ~(x - yl~alx - 
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Y)a. Therefore, when we express the average value S ~ of  the conditional 
entropy of the physical system in terms of Pin(x), Pout(X), and P(xly), we obtain 

[_ 'odxj~oo .[P(xly)Pin(y)]p~ut(x) J S ~ - dy P(xly)ein(y)In[ 

f_ . r P(xiy)-I = - ax dy e(xiy)ei.(y)m[ ] 
c ~  

-f~dxf~_dyP(xly)Pi.(y)lnPin(Y) 

�9 [ e ( x l y ) ]  = - J ]  dxl] dyP(xly)Pi.(y)m[p~t(x)]-I] dxPi.(x)lnPi.(x) 

= - -~r + S~, " (5.60) 

which yields the the relation Ir = S',. n - SO ut = ~r. In the same way, we 
obtain the relation Ik = ~k for the operational momentum measurement. 

Therefore we have found that the information calculated as the difference 
between the premeasurement entropy and the average value of the postmea- 
surement entropy of the physical system is equal to the Shannon mutual 
information extracted from the result of  the operational phase-space measure- 
ment. The measurement process, the entropy change, and the mutual informa- 
tion that we have considered are schematically shown in Fig. 2. In the figure, 
X, Y, and Z represent the sets of probability events in the premeasurement 
and postmeasurement quantum states of  the physical system and in the result 

Fig. 2. Schematic representation of the measurement process, the entropy change, and 
the mutual information. 
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obtained by the measurement apparatus. Using X and Z, we can express the 
Shannon mutual information ,,~ (= ~r or ~k) as 

,,~ = H(X)  - H(XIZ)  = n ( z )  - H(ZIX) (5.61) 

and the information calculated as the entropy change of the physical system 
is given by 

I = H(X)  - H(YIZ)  (5.62) 

where H(U) is the Shannon entropy (the information-theoretic entropy) 
obtained for the set U of the probability events and H(UI V) is the conditional 
entropy (Shannon, 1948a, b; Cover and Thomas, 1991). The equality I = 
yields the relation H(XIZ)  = H(YIZ)  in our measurement model. This relation 
indicates that the ambiguity in our knowledge about the premeasurement 
state of the physical system is equal to that in our knowledge about the 
postmeasurement state, provided we obtain the measurement outcome for 
the physical system. 

5.3. S imul taneous  M e a s u r e m e n t  o f  Posit ion and M o m e n t u m  

Using the results obtained in Section 4.3, we consider the information 
about a physical system obtained by an operational phase-space measurement 
of position and momentum. In this case, to calculate the entropy and informa- 
tion, we need the probability distribution of position and momentum in the 
quantum state of the physical system, that is, the probability distribution P (x, 
p). It is known, however, that there is no such probability distribution in 
quantum mechanics. Thus, to avoid this difficulty, we apply the phase-space 
Q-function (Husimi function) (Husimi, 1940; Kano, 1965; Mehta and Sudars- 
han, 1965) as the probability distribution of position and momentum for 
estimating the entropy and the information. The entropy calculated by means 
of the phase-space Q-function is called the Wehrl entropy (Wehrl, 1978, 1979). 

The Wehrl entropy of the initial quantum state 0 of the physical system 
is given by 

S ~  = - f dZ[3 Qi.([3) In Qin([3) (5.63) 
Ja e R 2 

where Qin([3) is the Q-function of the initial quantum state of the physical 
system, namely, Qi.([3) = "rr-l([3101[ 3) with the coherent state 113). When we 
obtain the measurement outcomes r and k in the operational phase-space 
measurement, the conditional Q-function of the postmeasurement state of 
the physical system becomes 

1 ([31Y(r, k)15113) 
Qo.t([31r, k) = - (5.64) 

"rr ~l/'(r, k) 
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where the operation ~(r, k) describing the state change of the physical system 
and the operational phase-space probability density ~ k) of the measure- 
ment outcome are given by 

f' '. (2,rr) 2 du dv du' dv' ~p.m(lg,  bl , IJ, Vt)  
oo 

• e-;Iu(~-~)+v~~ (5.65) 

1 
W(r, k) = Tr[~(r, k)0] = ~ Tr[b(r, k)#b+(r, k)l~] (5.66) 

Here 7s u'; v, v') = ab(U, VlO,hlU', v'Lh [see equation (4.38)] and the 
statistical operator 6- is given by equation (4.39). Then  the average value 
S out of the conditional Wehrl entropy of the physical system after the measure- rk 

ment is calculated as 

S ~t dr dk ~l,V(r, out = k)S rk (r, k) (5.67) 

with 
( 

sou,, k) = - /  d213 Qout(131r, k)ln Qout(131r, k) (5.68) rk ~r, 
J~ E R  2 

Using equations (5.63) and (5.67), we obtain the information Irk about 
the physical system gained by the operational phase-space measurement of 
position and measurement, 

Irk = S~r,] -- S~ t (5.69) 

Then, it is easy to see from equations (5.63), (5.64), and (5.67)-(5.69) that 
the information Irk can be expressed as 

[rk= ]Irk -- Aoffrk (5.70) 

where Hrk is the differential entropy calculated by the operational phase- 
space probability density ~W(r, k) of the measurement outcome, 

Hrk = - dr dk ~W'(r, k) In CW(r, k) (5.71) 
oo 

and the quantity A#rk is given by 

moor k _~_ - - !  dr dk de[3 (131,~(r, k)15113) ln(131~(r, k)01[3) 
'Tr o0 E R 2 

l I ~  
+ -- d213 (13101[~) ln(131~113) (5.72) 

Ti" E R  2 
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Using equations (5.70)-(5.72), we can estimate the information lr~ about the 
physical system extracted from the operational phase-space measurement of 
position and momentum, where the estimation is performed by using the 
Wehrl entropies. 

To obtain the information Irk explicitly, suppose that the measurement 
apparatus of position and momentum are prepared in the vacuum states, 

[)ab = 10)a a(0l @ 10)b b(0l (5.73) 

Furthermore, the measured physical system is in the coherent state [a} with 
a = (q + ip)/v/2 before the measurement. In this case,the phase-space Q- 
function Qi.(13) of the initial quantum state of the physical system and the 
operational phase-space probability density ~lg(r, k) of the measurement out- 
come are given by 

1 
Qi.(13) = - exp(-113 - o t l  2) (5.74) 

,IT 

4 8 _ Oil2 ) 24#(r, k) = ~ e x p ( - ~  IIx (5.75) 

where we set p, = (r + ik)/,f2. Therefore we obtain the entropies S i,.9, and Hrk, 

Sig, = ln(e-tr), Hrk=  ln(~-~ s (5.76) 

Furthermore, the quantity (1312g(r, k)~113) is calculated as 

1 f_duI~_dve_l12(u2+v2)+i(ur_uk)(131e_i(u~_v~)lot) 2 (131~(r, k)~113) = 4----- 5 

= -~5 fz~R 2 d2z e-'z'z+~*z-~z* (131b(z)l~ 2 

_ 4 exp - ~  Itx - od 2 - (5.77) 
9~  

which yields Ar = ln(9~e/4). Therefore it is found from equations (5.70) 
and (5.76) that the information Ir~ is estimated to be zero. This result indicates 
that when we measure the physical system in the coherent state with the 
measurement apparatus prepared in the vacuum states and we estimate the 
information gain by means of the Wehrl entropies, we cannot obtain any 
information about the system. 

Next we consider the case when we know only the average value N of 
the photon number of the physical system. According to the maximum- 
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entropy principle (Jaynes, 1957a, b), the quantum state of the physical system 
is described by the thermal state given by (5.53). In this case, the Q-function 
Qin (13) of the initial quantum state of the physical system and the operational 
phase-space probability density ~r k) of the measurement outcome are 
given by 

1 ( 11312_) 
Qi.([3) - -rr(l + m) exp 1 + mJ (5.78) 

~ ( r ,  k) - 

which yields the entropy 

4 ( 8Ip~12 ] 
"rr(9+8~)exp 9 + 8 ~ J  

Si~, = ln['rre(l + ~)], 

Furthermore, the quantity (131~(r, 

(13137(r, k)lS113) 

1 f,~ d2ot { Ic~12'~ 
- "rr~ ~R2 exp~---~-j 

Hrk = In[ xre (9 z~ + 8 3.] 

k)b113) is calculated from (5.77), 

4 

2 8 ] 
9 + 8~ 11~12 

(8  [ a+2~ 2 ) 
• exp - ~ l l x -  al e -  13 3 

4 [ 9 + 8 ~  [ 2 ( 3 + 4 ~ )  
97r(1 + ~)  exp 9(1 + ~) 13 9 + 8~ 

(5.79) 

(5.80) 

( 5 . 8 0  

from which we can obtain A~rk = In(9 are/4). In this equation, we have used 
the P-representation of the thermal state of the physical system. Therefore, 
it is found from equations (5.70) and (5.80) that the information Irk about 
the physical system is given by 

Irk = ln(1 + 8~)  (5.82) 

If the average photon number of the physical system is sufficiently large 
(th > >  1), we find that Irk "~ Hrk ~" In rh. Of course, if rh = 0, we cannot 
obtain any information about the physical system (Irk = 0). 

6. S U M M A R Y  

In this paper, we have consider the state change, quantum probability, 
and information gain in an operational phase-space measurement. For this 
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purpose, we have obtained the operational POVM which yields the quantum 
probability of the measurement outcome and the operation (or the complete 
positive instrument) which describes the state change of the measured physical 
system caused by the effect of the operational phase-space measurement. 
The properties of the operational POVM and marginal POVM and their 
Naimark extensions have been investigated. It has been found that the Naimark 
extensions are expressed in terms of the relative-position states and the 
relative-momentum states in the extended Hilbert space. Furthermore, it has 
been shown that the observable quantities measured in the operational phase- 
space measurement are given by fuzzy or unsharp observables which are not 
necessarily Hermitian operators due to the quantum noise of the measurement 
apparatus. The state change of the physical system measured in the operational 
phase-space measurement is described by an operation which has been 
obtained explicitly for the position measurement, the momentum measure- 
ment, and the simultaneous measurement of position and momentum. In this 
case, we have assumed the standard models for the interaction Hamiltonians 
between the measured physical system and the measurement apparatus. Using 
the results, we have investigated the information about the physical system 
gained in the operational phase-space measurement. Then we found that the 
average value of the entropy change of the physical system is equal to the 
Shannon mutual information extracted from the outcomes exhibited by the 
measurement apparatus. 

Finally, investigations of the information about a measured physical 
system and the state change caused by the effect of a quantum measurement 
provide the basis of the quantum mechanical phenomena in the quantum 
communication and information theory (Bendjaballah et al., 1991; Belavkin 
et  al., 1995; Hirota et al., 1997). For instance, extracting information from 
a received quantum-state signal is nothing but an operational quantum mea- 
surement. Eavesdropping for a quantum communication system causes the 
state change of the signal that carries information. 
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